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Abstract Repeated measures designs are common in exper-
imental psychology. Because of the correlational structure in
these designs, the calculation and interpretation of confi-
dence intervals is nontrivial. One solution was provided by
Loftus and Masson (Psychonomic Bulletin & Review 1:476–
490, 1994). This solution, although widely adopted, has the
limitation of implying same-size confidence intervals for all
factor levels, and therefore does not allow for the assessment
of variance homogeneity assumptions (i.e., the circularity
assumption, which is crucial for the repeated measures
ANOVA). This limitation and the method’s perceived com-
plexity have sometimes led scientists to use a simplified
variant, based on a per-subject normalization of the data
(Bakeman & McArthur, Behavior Research Methods,
Instruments, & Computers 28:584–589, 1996; Cousineau,
Tutorials in Quantitative Methods for Psychology 1:42–45,
2005; Morey, Tutorials in Quantitative Methods for
Psychology 4:61–64, 2008; Morrison & Weaver, Behavior
Research Methods, Instruments, & Computers 27:52–56,
1995). We show that this normalization method leads to
biased results and is uninformative with regard to circularity.
Instead, we provide a simple, intuitive generalization of the
Loftus and Masson method that allows for assessment of the
circularity assumption.
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Confidence intervals are important tools for data analysis. In
psychology, confidence intervals are of two main sorts. In
between-subjects designs, each subject is measured in only
one condition, such that measurements across conditions are
typically independent. In within-subjects (repeated meas-
ures) designs, each subject is measured in multiple condi-
tions. This has the advantage of reducing variability caused
by differences among the subjects. However, the correla-
tional structures in the data cause difficulties in specifying
confidence-interval size.

Figure 1a shows hypothetical data from Loftus and
Masson (1994). Each curve depicts the performance of one
subject in three exposure-duration conditions. Most subjects
show a consistent pattern—better performance with longer
exposure duration—which is reflected by a significant effect
in repeated measures analysis of variance (ANOVA) [F(2,
18) 0 43, p < .001].

However, this within-subjects effect is not reflected by
traditional standard errors of the mean (SEM; Fig. 1b), as
calculated with the formula.

SEMbetw
j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

nðn� 1Þ
Xn
i¼1

yij � y:j
� �2s

where SEMj
betw is the SEM in condition j, n the number of

subjects, yij the dependent variable (DV) for subject i in
condition j, and y:j the meanDVacross subjects in condition j.

The discrepancy occurs because the SEMbetw includes
both the subject-by-condition interaction variance—the de-
nominator of the ANOVA’s F ratio—and in addition the
between-subjects variance, which is irrelevant in the F ratio.
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In our example, subjects show highly variable overall per-
formance, which hides the consistent pattern of within-
subject effects. This is common: The between-subjects var-
iability is typically larger than the subject-by-condition in-
teraction variability. Therefore, the SEMbetw is inappropriate
for assessing within-subjects effects. Before discussing sol-
utions to this shortcoming, we will offer some general com-
ments about error bars.

Error bars

Error bars reflect measurement uncertainty and can have
different meanings. For example, they can correspond to
SEMs, standard deviations, confidence intervals, or the more
recently proposed inferential confidence intervals (Goldstein

& Healy, 1995; Tryon, 2001). Each of these statistics stresses
one aspect of the data, and each has its virtues. For example,
standard deviations might be the first choice in a clinical
context where the focus is on a single subject’s performance.
In experimental psychology, the most-used statistic is the
SEM. For simplicity, we will therefore focus on the SEM,
although all of our results can be expressed in terms of any
related statistic.

To better understand the SEM, it is helpful to recapitulate
two simple “rules of eye” for the interpretation of SEMs. The
rules, which we will call the 2- and 3-SEM rules, respectively,
are equivalent to Cumming and Finch’s (2005) Rules 6 and 7.
First, if a single mean (based on n ≥ 10 measurements) is
further from a theoretical value (typically zero) than ~2
SEMs, this mean is significantly different (at a 0 .05) from
the theoretical value. Second, if two means (both based on n ≥
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Fig. 1 Hypothetical data of Loftus and Masson (1994). (a) Individual
data: Each subject performs a task under three exposure durations (1 s,
2 s, and 5 s). Although the subjects vary in their overall performance,
there is a clear within-subjects pattern: All subjects improve with
longer exposure duration. (b) The between-subjects SEMbetw values
don’t reflect this within-subjects pattern, because the large between-
subjects variability hides the within-subjects variability. (c) SEML&M,
as calculated by the Loftus and Masson method, adequately reflects the
within-subjects pattern. (d) The normalization method: First, the data
are normalized (e). Second, traditional SEMs are calculated across the

normalized values, resulting in SEMnorm. (f) Our suggestion for a
compact display of the data. Error bars with long crossbars correspond
to SEML&M, and error bars with short crossbars to SEMpairedDiff (scaled
by the factor 1/√2; see main text). The fact that the SEMpairedDiff values
are almost equal to those of SEML&M indicates that there is no serious
violation of circularity. (g) Pairwise differences between all conditions
and the corresponding SEMpairedDiffs. Error bars depict ±1 SEMs as
calculated by the different methods. Numbers below the error bars are
the numerical values of the SEMs
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10 measurements) in a between-subjects design with approxi-
mately equal SEMs are further apart than ~3 SEMs, these
means are significantly different from one another (at a 0 .05).1

Loftus and Masson (1994) method

Loftus and Masson (1994) offered a solution to the problem
that SEMbetw hides within-subject effects (Fig. 1c). The
SEML&M is based on the pooled error term of the repeated
measures ANOVA and constructed such that the 3-SEM rule
can be applied when interpreting differences between
means. This central feature makes the SEML&M in a repeated
measures design behave analogously to the SEMbetw in a
between-subjects design.2

Normalization method

Although widely accepted, Loftus and Masson’s (1994)
method has two limitations: (a) By using the pooled error term,
the method assumes circularity, which to a repeated measures
design is what the homogeneity of variance (HOV) is to a
between-subjects design. Consequently, all SEML&Ms are of
equal size. This is different from between-subjects designs, in
which the relative sizes of the values of SEMbetw allow for
judgments of the HOVassumption. (b) The formulas by Loftus
and Masson (1994) are sometimes perceived as unnecessarily
complex (Bakeman & McArthur, 1996).

Therefore, Morrison and Weaver (1995), Bakeman and
McArthur (1996), Cousineau (2005), and Morey (2008) sug-
gested a simplified method that we call the normalization
method. It is based on an illustration of the relationship be-
tween within- and between-subjects variances used by Loftus
and Masson (1994).3 Proponents of the normalization method
argue that it is simple and allows for judgment of the assump-
tion of circularity.

The normalization method consists of two steps. First, the
data are normalized (Fig. 1d). That is, the overall perfor-
mance levels for all subjects are equated without changing
the pattern of within-subjects effects. Normalized scores are
calculated as

wij ¼ yij � yi: � y::ð Þ
where i and j index the subject and factor levels; wij and yij
represent normalized and raw scores, respectively; yi: is the
mean score for subject i, averaged across all conditions; and
y:: is the grand mean of all scores. Second, the normalized
scores wij are treated as if they were from a between-subjects
design. The rationale is that the irrelevant between-subjects
differences are removed, such that now standard computa-
tions and the traditional SEM formula can be used on the
normalized scores:

SEMnorm
j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

nðn� 1Þ
Xn
i¼1

wij � w:j

� �2s

with SEMj
norm being the SEMnorm in condition j and n the

number of subjects. The resulting SEMnorms are shown in
Fig. 1e.

The normalization method seems appealing in its sim-
plicity. All that is required is to normalize the within-
subjects data, and then standard methods from between-
subjects designs can be used. However, this method under-
estimates the SEMs and does not allow for an assessment of
circularity.

Problem 1 of the normalization method: SEMs
are too small

Figures. 1c and 1e illustrate this problem: all SEM norm

values are smaller than SEML&M. This is a systematic bias
that occurs because the normalized data, although correlat-
ed, are treated as uncorrelated. Consequently, the pooled

SEMnorm underestimates the SEML&M by a factor of
ffiffiffiffiffiffiffi
J�1
J

q
(with J being the number of factor levels).4 Morey (2008)
derived this relationship and also suggested that the
SEMnorm be corrected. However, this is not a complete
solution, because the method still leads to an erroneous view
of what circularity means.

1 For simplicity, the 3-SEM rule treats all comparisons as a-priori
contrasts and does not take into account problems of multiple testing.
Below we provide an example of Bonferroni correction for post-hoc
testing. Similarly, one could calculate confidence intervals based on
Tukey’s range test or similar statistics.
2 Note that the SEML&M only provides information about the differ-
ences among within–subject levels. It does not provide information
about the absolute value of the DV, for which SEMbetw would be
appropriate. It is, however, rare in psychology that absolute values
are of interest.
3 Unfortunately, this illustration has led to some confusion. Although it
provides a valid description of the error term in the repeated measures
ANOVA, it suggests that the Loftus and Masson (1994) method was
based on normalized scores, which is not true. Therefore, the normal-
ization method is not a generalization of the Loftus and Masson
method. Also, the critique based on the assumption that the Loftus
and Masson method used normalized scores (Blouin & Riopelle, 2005)
does not apply.

4 That the normalization method is biased might confuse some readers,
because they remember that we can represent a within-subjects
ANOVA as a between-subjects ANOVA on the normalized scores
(Maxwell & Delaney, 2000, p. 472, note 5 of chap. 11). However, to
obtain a correct F test, we would need to deviate from the between-
subjects ANOVA by adjusting the degrees of freedom (Loftus &
Loftus, 1988, digression 13-1, p. 426). This adjustment takes into
account that the normalized data are correlated and is not performed
by the normalization method.
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Circularity

Between-subjects ANOVA assumes HOV, and we can as-
sess the plausibility of this assumption by judging whether
the SEMbetw values are of similar size. The corresponding
assumption for repeated measures ANOVA is circularity
(Huynh & Feldt, 1970; Rouanet & Lepine, 1970).

Consider the variance–covariance matrix Σ of a repeated
measures design. Circularity is fulfilled if and only if an
orthonormal matrix M exists that transforms Σ into a spher-
ical matrix (i.e., with l on the main diagonal and zero
elsewhere), such that

MΣM0 ¼ lI

where l is a scalar and I is the identity matrix (cf. Winer,
Brown, & Michels, 1991). Because of this relationship to
sphericity, the circularity assumption is sometimes called the
sphericity assumption.

We can reformulate circularity in a simple way:
Circularity is fulfilled if and only if the variability of all
pairwise differences between factor levels is constant
(Huynh & Feldt, 1970; Rouanet & Lepine, 1970).
Therefore, we can assess circularity by examining the vari-
ance of the difference between any two factor levels.
Depicting the corresponding SEM, which we describe be-
low, is an easy generalization of the Loftus and Masson
(1994) method. Before describing this method, however,
we show that the normalization method fails to provide
correct information about circularity.

Problem 2 of the normalization method: Erroneous
evaluation of circularity

There are different reasons why the normalization method
cannot provide a visual assessment of circularity. For exam-
ple, testing for circularity requires evaluating the variability
of all J(J − 1)/2 pairwise differences (J being the number of
factor levels), while the normalization method yields only J
SEMnorm values to compare. Also, we can construct exam-
ples showing clear violations of circularity that are not
revealed by the normalization method.

Figure 2 shows such an example for one within-subjects
factor with four levels. The pairwise differences (Fig. 2d)
show small variability between levels A and B and levels C
and D, but large variability between levels B and C. The
normalization method does not indicate this large circularity
violation (Fig. 2c). The reason can be seen in Fig. 2b:
Normalization propagates the large B and C variability to
conditions A and D. Because conditions A and B don’t add
much variability themselves, the normalization method cre-
ates the wrong impression that circularity holds.

It is instructive to evaluate this example using stan-
dard measures of circularity. The Greenhouse–Geisser
epsilon (Box, 1954a, 1954b; Greenhouse & Geisser,
1959) attains its lowest value at maximal violation
[here, εmin 0 1/(J – 1) 0 .33], while a value of εmax 0

1 indicates perfect circularity. In our example, ε 0 .34,
showing the strong violation of circularity (Huynh &
Feldt’s, 1976, epsilon leads to the same value). The
Mauchly (1940) test also indicates a significant viola-
tion of circularity (W 0 .0001, p < .001) and a repeated
measures ANOVA yields a significant effect [F(3, 57) 0
3, p 0 .036], but only if we—erroneously—assume
circularity. If we recognize this violation of circularity
and perform the Greenhouse–Geisser or Huynh–Feldt
corrections, the effect is not significant (both ps 0 .1).
A multivariate ANOVA (MANOVA) also leads to a
nonsignificant effect [F(3, 17) 0 1.89, p 0 .17]. In
summary, our example shows that the normalization
method can hide serious circularity violations. A plot
of the SEM of the pairwise differences, on the other
hand, clearly indicates the violation.

A better approach: Picturing pairwise differences

As a simple and mathematically correct alternative to the
normalization method, we suggest showing all pairwise
differences between factor levels with the corresponding
SEM (SEMpairedDiff), as shown in Figs. 1g and 2d. To the
degree that these values of SEMpairedDiff are variable, there is
evidence for violation of circularity. Figure 1g shows that
for the Loftus and Masson (1994) data, all SEMpairedDiffs are
similar, suggesting no serious circularity violation (which is
consistent with standard indices: Greenhouse–Geisser ε 0
.845, Huynh–Feldt ε 0 1, Mauchly test W 0 .817; p 0 .45).

The values of SEMpairedDiff are easy to compute, because
only the traditional formulas for the SEM of the differences
are needed. Consider the levels k and l of a repeated measure
factor. We first calculate the pairwise differences for each
subject di 0 yik – yil, then use the traditional formula to
calculate the SEM of the mean difference:

SEMpairedDiff
kl ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n n� 1ð Þ
Xn
i¼1

di � d:
� �2s

This approach is consistent with the Loftus and Masson
(1994) method, because pooling the SEMpairedDiffs results inffiffiffi
2

p
SEML&M (Appendix A1). Therefore, we can use this

relationship to calculate the SEML&M without the inconve-
nience of extracting the relevant ANOVA error term from
the output of a statistical program (another critique of the
Loftus & Masson method: Cousineau, 2005; Morey, 2008).
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Picturing pairwise differences can supplement numeric
methods

Figure 3 illustrates how evaluating SEMpairedDiff can lead to
a surprising result, thereby showing the virtues of our ap-
proach. Repeated measures ANOVA shows for these data a
clearly nonsignificant result, whether or not we correct for
circularity violation [F(3, 117) 0 1.2, p 0 .32; Greenhouse–
Geisser ε0 .50, p 0 .30; Huynh–Feldt ε 0 .51, p 0 .30]. We
show that our method nevertheless detects a strong, signif-
icant effect and will guide the researcher to the (in this case)
more appropriate multivariate methods.

Inspecting Fig. 3c for circularity violations shows
that between conditions D and C there is a very small
SEMpairedDiff, indicating that the pairwise difference be-
tween these conditions has much less variability than all

of the other pairwise differences. Applying the 2-SEM
rule indicates that the corresponding difference differs
significantly from zero, while no other differences are
significant. This is also true, using the Bonferroni cor-
rection5 for multiple testing, as suggested by Maxwell
and Delaney (2000).

In short, SEMpairedDiff indicates that there is a strong
circularity violation and a strong effect. Univariate repeated
measures ANOVA does not detect this effect, even when
corrected for circularity violations. MANOVA, on the other

5 The Bonferroni correction is this: We have six possible comparisons.
Therefore, we need the (100 – 5/6)% 0 99.12% criterion of the t
distribution with (40 – 1) 0 39 degrees of freedom, which is tcrit 0
2.78. Therefore, all SEMs need to be multiplied by this value (instead
of 2, as in the 2-SEM rule).
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Fig. 2 Example showing that the normalization method fails to detect
serious violations of circularity. (a) Simulated data for a within-
subjects factor with four levels. (b) The normalized data. (c) The
normalization method leads to similar SEMnorm values, thereby not

indicating the violation of circularity. (d) Pairwise differences and the
corresponding SEMpairedDiffs indicate a large violation of circularity.
Error bars depict ±1 SEMs as calculated by the different methods.
Numbers below the error bars are the numerical values of the SEMs
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hand, detects the effect [F(3, 37) 0 98, p < .001] and is
thereby consistent with the result of our approach.6

This example shows that the SEMpairedDiff conveys im-
portant information about the correlational structure of the
data that can prompt the researcher to use more appropriate

methods. No other method discussed in this article would
have achieved this.

Practical considerations when picturing pairwise
differences

The example above shows that our approach can help the
researcher during data analysis. When presenting data to a
general readership, a more compact way of presenting
the SEMpairedDiff might be needed, especially for factors

6 In our example, MANOVA is more appropriate because it does not
rely on the assumption of circularity. It has, however, other limitations
(mainly for small sample sizes) such that it cannot simply replace
univariate ANOVA in general.
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Fig. 3 Example demonstrating
the virtues of our approach. (a)
Simulated data for a within-
subjects factor with four levels.
(b) Means and the
corresponding SEMbetw values.
(c) The pairwise differences and
corresponding SEMpairedDiffs
indicate a large violation of
circularity. Error bars depict ±1
SEMs as calculated by the dif-
ferent methods. Numbers below
the error bars are the numerical
values of the SEMs
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with many levels [because the number of pairwise dif-
ferences can become large; J factor levels will result in
J(J – 1)/2 pairwise differences]. If a plot of pairwise
differences would be overly tedious, one could (a) pres-
ent the data as an upper triangular matrix, either in
numerical form or as a color-coded heat map, or (b)
present the SEM pairedDiff together with the SEML&M in
one single plot, as shown in Fig. 1f. In this plot, the
error bars with short crossbars correspond to the
SEMpairedDiff (scaled, see below), and the error bars with
long crossbars correspond to the SEML&M. The plot
gives a correct impression of circularity by means of
the scaled SEMpairedDiffs (if circularity holds, all scaled
SEMpairedDiffs will be similar to SEML&M) and allows
for application of the 3-SEM rule to interpret differences
between means. The downside is that it is not immedi-
ately apparent which error bars belong to which pair of
means. The researcher needs to decide whether com-
pactness of presentation outweighs this limitation.

To create a plot like Fig. 1f, each SEM pairedDiff is
multiplied by 1ffiffi

2
p and then plotted as an error bar for

each of the two means from which the difference was
calculated. The scaling is necessary because we go back
from a difference of two means to two single means. The
scaling gives us, for each mean, the SEM that would
correspond to the SEM of the difference if the two means
were independent and had the same variability, such
that the 3-SEM rule can be applied and the scaled
SEM pairedDiffs are compatible with the SEM L&Ms
(Appendix. A1).

Generalization to multifactor experiments

(a.) Only within-subjects factors So far, we have dis-
cussed only single-factor designs. If more than
one repeated measures factor is present, the
SEMpairedDiff should be calculated across all possi-
ble pairwise differences. This simple method is
consistent with the Loftus and Masson (1994) meth-
od, which also reduces multiple factors to a single
factor (e.g., a 3 × 5 design is treated as a single-
factor design with 15 levels).

With regard to circularity, our generalization is
slightly stricter than necessary, because we consid-
er the pairwise differences of the variance–covari-
ance matrix for the full comparison (by treating
the design as a single-factor design). If the vari-
ance–covariance matrix fulfills circularity for this
comparison, then it also fulfills it for all subcom-
parisons, but not vice versa (Rouanet & Lepine,

1970, Corollary 2). Therefore, it is conceivable
that the SEMpairedDiff values indicate a violation
of circularity, but that a specific subcomparison
corresponding to one of the repeated measures
factors does not. However, we think that the sim-
plicity of our rule outweighs this minor limitation.

(b.) Mixed designs (within- and between-subjects factors)
In mixed designs, an additional complication arises
because each group of subjects (i.e., each level of the
between-subjects factors) has its own variance-
covariance matrix, all of which are assumed to be
homogeneous and circular. Thus, there are two
assumptions, HOV and circularity. As was mentioned
by Winer et al. (1991, p. 509), “these are, indeed,
restrictive assumptions”—hence, even more need for
a visual guide to evaluate their plausibility.

Consider one within-subjects factor and one
between-subjects factor, fully crossed, with equal
group sizes. For each level of the between-subjects
factor, we suggest a plot with the means and SEMbetw

for all levels of the within-subjects factor, along with a
plot showing the pairwise differences and their
SEMpairedDiff (Fig. 4 and Appendix A2). To evaluate
the homogeneity and circularity assumptions, respec-
tively, one would gauge whether all SEMbetw values
corresponding to the same level of the within-subjects
factor were roughly equal and whether all possible
SEMpairedDiffs were roughly equal.

Inspecting Fig. 4a shows that Group 2 has higher
SEMbetws than the other groups, suggesting a viola-
tion of the HOV assumption. And indeed, the four
corresponding Levene (1960) tests, each comparing
the variability of the groups at one level of the
within-subjects factor, show a significant deviation
from HOV (all Fs > 27, all ps < .001). Our ap-
proach reveals that this is due to the higher variabil-
ity of Group 2. Inspecting Fig. 4b shows that the
SEMpairedDiffs are similar, suggesting that circularity
is fullfilled. This, again, is consistent with standard
repeated measures methods (Greenhouse–Geisser
ε 0 .960, Huynh–Feldt ε 0 1, Mauchly test W 0 .944,
p 0 .25).

Precautions

Although we believe our approach to be beneficial, it needs
to be applied with caution (like any statistical procedure).
Strictly speaking, the method only allows judgments about
pairwise differences and the circularity assumption; it does
not allow judgments of main effects or interactions. For this,
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we would need pooled error terms and overall averaging, as
used in ANOVA. Also, our use of multiple estimates of
variability (i.e., for each pairwise difference, a different
SEMpairedDiff) makes each individual SEMpairedDiff less reli-
able than an estimate based on the pooled error term. In

many situations, however, neither restriction is a serious
limitation.

For example, consider Fig. 1g. The SEM pairedDiff values
are consistent, such that the SEM based on the pooled error
term will be similar to them (Appendix A1) and that the
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inherently reduced reliability of the SEMpairedDiff will be no
problem. Each pairwise difference suggests a significant
difference from zero, be it interpreted as a-priori or
post-hoc test,7 or by applying the 2-SEM rule of eye.
Therefore, a reader seeing only this figure will have an
indication that the main effect of the ANOVA is signi-
ficant. This example again shows how our method can
supplement (though not supplant) traditional numerical
methods.

Conclusions

We have suggested a simple method to conceptualize vari-
ability in repeated measures designs: Calculate the
SEM pairedDiff of all pairwise differences, and plot them.
The homogeneity of the SEMpairedDiff provides an assess-
ment of circularity and is (unlike the normalization method)
a valid generalization of the well-established Loftus and
Masson (1994) method.
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Appendix

A1. Relationship between SEMpairedDiff and SEML&M

We show that the SEML&M is equal to the pooled and scaled
SEMpairedDiff in the following way:

SEML&M ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1ffiffiffi
2

p SEMpairedDiff
::

� �2
s

This notation is similar to that of Winer et al. (1991): The
horizontal line and the two dots indicate that all
corresponding SEMpairedDiffs are pooled. For example, in

Fig. 1g, the SEMpairedDiff values are 0.3333, 0.2906, and
0.4163, such that

SEML&M ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1ffiffi
2

p SEMpairedDiff
12

� �2

þ 1ffiffi
2

p SEMpairedDiff
13

� �2

þ 1ffiffi
2

p SEMpairedDiff
23

� �2

3

vuut
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:23572þ0:20552þ0:29442

3

q
¼ 0:2480

For the proof, consider a factor with J 0 3 levels
first. For a single-factor repeated measures ANOVA,
MSE ¼ var: � cov:: (Winer et al., 1991, p. 264).

Because SEML&M ¼
ffiffiffiffiffiffiffi
MSE
n

q
, we obtain

SEML&M2 ¼ MSE

n
¼ var: � cov::

n

¼ var1 þ var2 þ var3 � cov12 � cov13 � cov23
3n

The SEM for the difference between levels k and l is

SEMpairedDiff
kl ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vark�2covklþvarl

n :
q

Multiplying by 1=
ffiffiffi
2

p
and

pooling gives

1ffiffi
2

p SEMpairedDiff
::

� �2
¼ 1

3
1
2 SEM

pairedDiff 2

12 þ 1
2 SEM

pairedDiff 2

13 þ 1
2 SEM

pairedDiff 2

23

� �
¼ var1�2cov12þvar2þvar1�2cov13þvar3þvar2�2cov23þvar3

6n

¼ var1þvar2þvar3�cov12�cov13�cov23
3n ¼ SEML&M2

Generalization to a factor with more than three levels:
There are J(J – 1)/2 pairwise differences, J(J – 1)/2 cova-
riances, and J variances. This gives

1ffiffi
2

p SEMpairedDiff
::

� �2
¼ 2

J J�1ð Þ
PJ�1

K¼1

PJ
l¼kþ1

1
2 SEM

pairedDiff 2

kl

¼ 2
J J�1ð Þ

1
2n

PJ�1

k¼1

PJ
l¼kþ1

vark � 2covkl þ varl

¼ 1
n

1
J J�1ð Þ

PJ
k¼1

J � 1ð Þvark � 1
J J�1ð Þ

PJ�1

k¼1

PJ
l¼kþ1

2 covkl

 !

¼ 1
n

1
J

PJ
k¼1

vark � 2
J J�1ð Þ

PJ�1

k¼1

PJ
l¼kþ1

covkl

 !

¼ 1
n var:� cov::ð Þ ¼ SEML&M 2

A2. Mixed designs

We treat all within- and between-subjects factors of a mixed
design as single factors, such that we reduce the problem to
one between- and one within-subjects factor. In such a two-
factor mixed design, there is for each level of the between-
subjects factor a different variance–covariance matrix for
the within-subjects factor, which all have to be homoge-
neous and circular (Winer et al., 1991, p. 506). If group sizes

7 As an example, let us calculate the confidence interval (CI) for the
difference “2 s–1 s”: (a) A-priori test: The 95% critical value of the t
distribution is tcrit95%(9) 0 2.26, resulting in a CI of 2 ± (0.33 * 2.26) 0
[1.25, 2.75]. (b) Post-hoc test with Bonferroni correction: With J 0 3
pairwise comparisons, we need the (100 – 5/3)098.33% criterion of
the t distribution, which is tcrit98.33%(9) 0 2.93, and the CI is calculated
as 2 ± (0.33*2.93) 0 [1.03, 2.97].
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are equal, this can be assessed in three steps: (a) Estimate for
each level of the within-subjects factor, whether the
corresponding SEMbetw values are equal across all levels
of the between-subjects factor. If this is the case, the entries
on the diagonal of the variance–covariance matrices (i.e.,
the variances) are equal. (b) Estimate for each pair of within-
subjects levels whether the corresponding SEMpairedDiff val-
ues are equal across all levels of the between-subjects factor.
This ensures that all off-diagonal elements of the variance–
covariance matrices (i.e., the covariances) are equal, be-
cause we already know that the variances are equal and,
due to the relationship

SEMpairedDiff
kl ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vark � 2covkl þ varl

n

r
;

the SEMkl
pairedDiffs can only be equal if the covariances are

equal. (c) Estimate for each level of the between-subjects
factor whether the SEMpairedDiffs corresponding to all pairs
of within-subjects levels are equal. This ensures the circu-
larity of the variance–covariance matrices.

In short, we need to assess whether all SEMbetw values at
each level of the within-subjects factor are similar, and
whether all SEMpairedDiffs are similar. With unequal group
sizes, we cannot use SEM, because a different n would enter
the calculation. Therefore, we need to use standard devia-
tions instead.
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