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Commentary

In 2014, ten Brinke, Stimson, and Carney reported that 
unconscious processes detect liars better than conscious 
processes, and that the success of conscious processes 
was typically close to chance (~54% correct; Bond & 
DePaulo, 2006). They concluded that “although humans 
cannot consciously discriminate liars from truth tellers, 
they do have a sense, on some less-conscious level, of 
when someone is lying” (p. 1103) and argued that “accu-
rate unconscious assessments are made inaccurate either 
by consolidation with or correction by conscious biases 
and incorrect decision rules” (p. 1104). In short, ten 
Brinke et al. suggested that humans unconsciously know 
quite well whether someone is lying; however, conscious 
deliberations render these accurate unconscious assess-
ments inaccurate.

Such conclusions could potentially have far-reaching 
practical consequences. For example, on the basis of 
these conclusions, one could advise jurors and eyewit-
nesses in court to rely mainly on their intuition and to 
avoid conscious deliberations. However, this is a danger-
ous road to travel. There are well-documented cases in 
which eyewitnesses erred in their intuitive judgment, and 
only conscious deliberation led to the truth (Loftus, 2003). 
Therefore, before concluding that “accurate lie detection 
is, indeed, a capacity of the human mind, potentially 
directing survival- and reproduction-enhancing behavior 
from below introspective access” (ten Brinke et  al., 
p. 1104), we should make sure that there is strong scien-
tific evidence. Although the plausibility of these data has 
already been challenged (Levine & Bond, 2014; but see 
ten Brinke & Carney, 2014), we show that the statistical 
reasoning ten Brinke et al. used is flawed and that a more 
appropriate analysis of their data does not provide evi-
dence for accurate unconscious lie detection.1

Reanalysis of Data from Experiment 2

In Experiment 22 of ten Brinke et al., participants watched 
12 videos of interrogations, 6 showing a liar and 6 showing 

a truth teller (participants were not told which was the liar 
or truth teller). Then participants performed two tasks. In 
the direct (conscious) task, they saw pictures of the sus-
pects and classified them as liars or truth tellers; perfor-
mance was essentially at chance level (49.6% correct; 
chance level is 50%). In the indirect (unconscious) task, the 
pictures of the suspects (primes) were masked, such that 
they could not be perceived consciously. Participants sorted 
visible words (targets) such as “deceitful” or “honest” into 
the categories of “lie” or “truth.” Participants were signifi-
cantly faster if prime and target were congruent (e.g., the 
word “deceitful” was preceded by a picture of a liar) than if 
they were incongruent. On the basis of this significant con-
gruency effect, ten Brinke et al. concluded that there are 
“accurate unconscious assessments” (p. 1104) of liars ver-
sus truth tellers in the indirect (unconscious) task and that 
these assessments are better than the chance-level perfor-
mance in the direct (conscious) task.

However, this conclusion is flawed. The test for a sig-
nificant congruency effect is concerned only with the 
question of whether a true difference in response times 
(RTs) exists in the population, regardless of its size. One 
can conclude from this effect only that some classifica-
tion of the suspects has happened, but the accuracy of 
this classification and whether it was more accurate than 
in the direct task remain unknown. To make the claim 
that the RTs are evidence for good unconscious classifi-
cation, ten Brinke et al. would have needed to show that 
the RTs can be used to classify whether the suspects 
were truth tellers or liars. Only then would it be possible 
to compare the accuracy of this indirect classification 
with that in the direct task.

How can such an indirect classification be performed? 
Because of the experimental design, classifying suspects 
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as truth tellers or liars is equivalent to classifying trials as 
congruent or incongruent (e.g., if a trial is classified as 
congruent and the visible target was deceitful, then the 
suspect is classified as liar). Because ten Brinke et  al. 
argued that the congruency effect is evidence for accu-
rate unconscious classification (fast RTs in congruent tri-
als, slow RTs in incongruent trials), all one needs to do is 
find an appropriate threshold t and classify all trials with 
RTs smaller than t as congruent and trials with RTs larger 
than t as incongruent.

We performed this classification on ten Brinke et al.’s 
data using three different methods of calculating a thresh-
old. First, under the assumption that RTs follow normal 
or log-normal distributions (Ulrich & Miller, 1993), the 
threshold that leads to the best expected accuracy in a 
design with an equal number of congruent and incongru-
ent trials is the median of the RTs (e.g., MacKay, 2003; 
p. 190). Therefore, we classified the trials using within-
participant median RT, computed the accuracy over all 
trials of the participant, and averaged the accuracies 
across participants. This resulted in an average accuracy 
of 50.6% (SD = 2.65).

Second, to avoid assumptions about the RT distribu-
tions, we selected a threshold according to the standard 
procedures of machine learning (Shalev-Shwartz & Ben-
David, 2014): We randomly split the trials of each partici-
pant into equal-sized training and test sets (we reached 
similar results when we used other split sizes). On the 
training set, we determined the threshold that led to the 
best accuracy and used it to classify the test set. We 
repeated this procedure 10 times with different random 
splits of the data for each participant. This led to an aver-
age accuracy of 49.5% (SD = 2.60).

Third, to construct an overly optimistic upper bound 
(i.e., the highest accuracy that possibly could be achieved 
for the given data), we evaluated the accuracy of all pos-
sible thresholds over all trials of each participant, deter-
mined the best result, and averaged the obtained 
accuracies across participants. This resulted in an accu-
racy level of 53.7% (SD = 1.99), which means that for 
these data, no possible classifier exists with an accuracy 
larger than 54%—the very number that was interpreted as 
“detection incompetence” by ten Brinke et al. (p. 1098). In 
short, the classification accuracy in the indirect task is just 
as poor as in the direct task and for all practical purposes 
can be considered as being at chance level. There is no 
evidence for accurate unconscious assessments.

Although this result seems clear and consistent, one 
might ask whether it is fair to assess indirect classifica-
tion performance with RTs from single trials. One 
might argue that it would be better to average the RTs 
of multiple trials, thereby reducing measurement error 
and possibly improving accuracy. It is known from 

machine learning that such procedures can under cer-
tain conditions improve accuracy (e.g., Bühlmann, 
2004). We tested this idea following two methods: 
First, for each participant, we averaged all trials related 
to each suspect, classified these averages using the 
median across all suspects as the threshold, and aver-
aged the accuracies over all participants. This resulted 
in an accuracy level of 51.9% (SD = 16.30). Second, we 
averaged the RTs related to each suspect across all tri-
als and all participants, thereby including all available 
information for the classification. This resulted in an 
accuracy level of 50.0%. In short, even if we combined 
RTs from multiple trials and multiple participants, there 
is no evidence for better accuracy in the indirect task 
than in the direct task.

To understand why a significant difference does not 
indicate accurate classification, consider an intuitive 
example. Suppose one tried to classify individual adults 
as female versus male on the basis of their weights. The 
weight distributions for the two genders overlap a lot, so 
performance would be poor.3 On the other hand, if one 
performed a standard significance test, one would form 
two groups of same-gender adults and compare their 
mean weights. If the groups were large enough, one 
could easily obtain a significant difference. This shows 
how a significant difference can coexist with essentially 
chance-level classification accuracy and that good classi-
fication accuracy of the individual adults cannot be 
inferred from the fact that the group means are signifi-
cantly different. Good classification requires more: a clear 
separation of the female and male weight distributions at 
the level of the individual adults (or, in the ten Brinke 
et al. study, the RT distributions at the level of the indi-
vidual suspects). We have shown that—no matter how 
we aggregated the individual trials from ten Brinke 
et al.—the RT distributions of liars and truth tellers always 
overlapped so heavily that no good classification could 
be obtained.

Conclusion

The data of ten Brinke et  al. do not provide any evi-
dence for accurate unconscious lie detection. A signifi-
cant difference in the indirect task does not indicate 
accurate unconscious classification. For a meaningful 
comparison of the classification accuracies in the indi-
rect and direct tasks, both tasks have to measure just 
that: classification accuracy. We thank ten Brinke et al. 
for making their data available (Eich, 2014). Such public 
access to data allows for a rapid self-correction of sci-
ence without going through lengthy replication attempts 
first—which, even if successful, can easily take years 
(Ioannidis, 2012).
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Editor’s Note: The journal’s Editor in Chief (Eric Eich) 
invited ten Brinke et al. to respond to this Commentary 
by submitting a rebuttal that would be subject to review. 
In reply, ten Brinke et  al. wrote: “We appreciate the 
opportunity to respond to this Commentary but will 
respectfully decline. We hope that methodological and 
mathematical experts will take up this conversation to 
refine the methods available for comparing conscious 
and nonconscious classification in future research.”
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Notes

1. We implemented all analyses twice, once in the R software 
environment (Version 3.2.1; R Development Core Team, 2015) 
and once in MATLAB (The MathWorks, Natick, MA); the code 
used in R is available at https://osf.io/7825t.
2. We concentrated on Experiment 2 because only in this exper-
iment were unconscious stimuli presented. Experiment 1 inves-
tigated whether consciously visible pictures of the suspects had 
indirect effects on another task. Nevertheless, our critique also 
applies to Experiment 1, because ten Brinke et al. also inferred 

good classification from a significant RT difference for these 
indirect effects. However, our analysis—using the first thresh-
old-calculation method that we discuss later—resulted in clas-
sification accuracy of 51.1% (SD = 3.71), which is again clearly 
below the 54% that ten Brinke et  al. described as “detection 
incompetence” (p. 1098).
3. We thank an anonymous reviewer for suggesting this exam-
ple. The average weight difference between men and women 
is about 13 kg (SD ≈ 33 kg; McDowell, Fryar, Ogden, & Flegal, 
2008), so classification accuracy would be about 58%, d = 0.4 
(13/33). This is low but still well above the accuracy we found 
using data from the ten Brinke et al. study.
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