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Abstract
Many studies claim that visual regularities can be learned unconsciously and without explicit awareness. For example in the
contextual cueing paradigm, studies oftenmake claims using a standard reasoning based on two results: (1) a reliable response
time (RT) difference between repeated vs. new stimulus displays and (2) a close-to-chance sensitivity when participants are
asked to explicitly recognize repeated stimulus displays. From this pattern of results, studies routinely conclude that the sensi-
tivity of RT responses is higher than that of explicit responses—an empirical situation we call Indirect Task Advantage (ITA).
Many studies further infer from an ITA that RT effects were driven by a form of recognition that exceeds explicit memory:
implicit recognition. However, this reasoning is flawed because the sensitivity underlying RT effects is never computed. To
properly establish a difference, a sensitivity comparison is required. We apply this sensitivity comparison in a reanalysis of
20 contextual cueing studies showing that not a single study provides consistent evidence for ITAs. Responding to recent
correlation-based arguments, we also demonstrate the absence of evidence for ITAs at the level of individual participants.
This lack of ITAs has serious consequences for the field: If RT effects can be fully explained by weak but above-chance
explicit recognition sensitivity, what is the empirical content of the label “implicit”? Thus, theoretical discussions in this
paradigm-and likely in other paradigms using this standard reasoning-require serious reassessment because the current data
from contextual cueing studies is insufficient to consider recognition as implicit.

Keywords Implicit/explicit memory · Contextual cueing · Indirect task advantage · Signal detection theory

How do humans learn regularities in the continual stream
of visual input? The literature holds that visual regularities
can be learned implicitly and without awareness (Frost et al.,
2019;Goujon et al., 2015; Jiang, 2018;Theeuwes et al., 2022;
Turk-Browne et al., 2005). There are several paradigms sup-
porting this notion of which the contextual cueing paradigm

Supported by Deutsche Forschungsgemeinschaft (DFG/German
Research Foundation) CRC 1233 “Robust Vision” project 276693517;
Institutional Strategy of University of Tübingen (DFG, ZUK 63);
Cluster of Excellence “Machine Learning: New Perspectives for
Science”, EXC 2064/1, project 390727645; PID2020-118583GB-I00
from Agencia Estatal de Investigación, Spain, and FEDER, EU.

B Sascha Meyen
sascha.meyen@uni-tuebingen.de

1 Department of Computer Science, University of Tübingen,
Sand 6, 72076 Tübingen, Germany

2 Universidad Autónoma de Madrid, Madrid, Spain

3 Tübingen AI Center, Tübingen, Germany

is one of the most prominent ones (Chun & Jiang, 1998;
Chun, 2000; Chun & Jiang, 2003; Jiang & Sisk, 2019).

Whether or not contextual cueing occurs implicitly has
been controversially debated since its inception (Cleeremans
et al., 1998; Colagiuri and Livesey, 2016; Kroell et al., 2019;
Geyer et al., 2010; Geyer et al., 2012; Geyer et al., 2020;
Goldstein et al., 2022; Schlagbauer et al., 2012; Smyth &
Shanks, 2008; Sisk et al., 2019; Vadillo et al., 2016; Vadillo
et al., 2022). Here, we add a new argument to this debate by
scrutinizing the frequently used but flawed standard reason-
ing for inferring implicit recognition.This standard reasoning
seeks to demonstrate that indirect measures of recognition
(such as RT effects) reveal a higher sensitivity than partic-
ipants’ explicit reports—a purely empirical condition that
we call the Indirect Task Advantage (ITA). Together with
further assumptions, such an ITA is typically interpreted as
indicating some form of recognition that exceeds explicit
recognition and is, therefore, considered evidence for implicit
recognition. But we will show that the standard reasoning
fails to properly establish evidence for an ITA for method-
ological reasons.
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As a replacement, we describe the appropriate method to
properly establish an ITA: the sensitivity comparison. In a
preregistered reanalysis of 20 studies, we investigate the evi-
dence of ITAs with this more appropriate method and show
that there is little to no evidence for ITAs in those studies.

Given this striking lack of evidence for ITAs in studies that
have previously inferred implicit recognition from their data,
it is plausible that weak explicit recognition drives contextual
cueing RT effects. Without an ITA, there is no evidence for
recognition beyond what participants can explicitly report.
Therefore, strong claims about recognition being implicit
require more evidence than what is currently presented. Our
finding has serious implications for theoretical reasoning
about contextual cueing effects and their implicit vs. explicit
nature.

Our critique issimilar to that brought forward in themasked
priming paradigm where an analogous problem occurred
(Franz & von Luxburg, 2015; Meyen et al., 2022; Schnepf et
al., 2022; Zerweck et al., 2021). This shows that the flaw in
the standard reasoning is pervasive and likely generalizes to
many other paradigms. Overall, we conclude that the label
“implicit” or “unconscious” should be used more cautiously.

The standard reasoning is used to infer
an indirect task advantage

Implicit recognition is typically inferred from two tasks
yielding the following pattern of results. In a search task (see
Fig. 1a), participants are presented with displays of stimulus
configurations and their task is to find the one odd stimulus.
Most commonly, participants search for a T among Ls. They
do this in hundreds of trials over the course of the experiment.
In half of these trials, a small number of stimulus config-
urations are repeated over and over such that participants
have the chance to recognize these configurations through-
out the experiment. In the other half of the trials, the stimulus
configurations are always randomly generated anew so that
no recognition is possible. As a result, participants show a
search time advantage (see diverging curves in Fig. 1b): Over
the course of the experiment, RTs become faster for repeated
configurations than for the new configurations. This indicates
that participants recognized the repeated configurations at
some level allowing them to find the odd stimulus faster.

Was this recognition implicit or explicit? To answer this
question, an explicit recognition task is added at the end of the
experiment. There aremultiple variants of this task. Themost
common variant is to show participants one configuration per
trial and ask them whether they recognize this configuration
as a repeated one from the previous search task. The perfor-
mance in these binary explicit recognition tasks is measured
in terms of signal detection theory’s sensitivity d ′. This is typ-
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Fig. 1 Contextual Cueing Search Task. (a) In the search task of con-
textual cueing experiments, participants see a display consisting of a
configurations of distractors (Ls) and a target stimulus (T) that they
have to find. (b) Over the course of the experiment, participants pro-
duce faster RTs for stimulus configurations that are repeated throughout
the experiment vs. those that are randomly generated anew in each trial.
This demonstrates that there is some recognition of the repeated con-
figurations. Figure adapted from Vadillo et al. (2016), used under the
http://creativecommons.org/licenses/by/4.0/Creative Commons Attri-
bution 4.0 International License

ically low and close to chance level (d ′ < 0.3) indicating
at most weak explicit recognition of the repeated configura-
tions.

In another common variant, participants see two stimulus
configurations per trial: One was repeated and one is new.
They then have to choose the configuration from the two that
they believe was repeated throughout the search task. Again,
sensitivity d ′ is calculated to evaluate participants’ explicit
recognition.

Both of these variants ask for binary responses. In contrast,
there are other, less common variants in which participants
have to guess the location of the target stimulus (see Jiang &
Chun, 2003, and Smyth & Shanks, 2008 for an overview). In
such tasks, participants are shown an altered stimulus config-
uration in which the odd stimulus (T) is replaced by a regular
stimulus (L). Then, participants have to guess in which posi-
tion (or, typically, in which quadrant) the odd stimulus was
in the originally displayed configuration. This task requires
responses that are not binary and aremore difficult to relate to
the RT data. For this reason, we will focus on the much more
frequently employed explicit recognition tasks with binary
responses.
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Together with the clear RT effects in the search task,
the standard reasoning incorrectly infers implicit recog-
nition (see Fig. 2 for an illustration): Participants’ explicit
recognition was only weak but the clear RT effects seem
to indicate better recognition, thus, there seems to be evi-
dence for recognition beyondwhat participants can explicitly
report—implicit recognition. In short, a weak explicit recog-
nition task performance together with a clear RT effect has
been the typical basis for inferring implicit recognition.

This standard reasoning in contextual cueing is analogous
to that used in the unconscious priming paradigm Eriksen,
1960; Holender, 1986; Simons et al., 2007), where a clear
priming effect on RTs (or other indirect measures) combined
with a weak direct identification performance of the primes
is often taken as evidence for priming being unconscious
(see Fig. 2b). We started our investigation with the priming
paradigmwherewe introduced the term Indirect TaskAdvan-
tage (ITA; Meyen et al., 2022) and we continue using this
term here for consistency. If we had started in the contex-
tual cueing paradigm, we could have called it the Implicit
Task Advantage instead. With the standard reasoning and
its crucial component—the ITA—outlined, we proceed by
explaining its flaw.

The standard reasoning produces
unwarranted ITA conclusions

The main problem of the standard reasoning is that the same
source of (weak explicit) recognition can produce the typical
pattern of results in search and explicit recognition tasks.
The two tasks measure two very different things: mean RT
effects in the search task vs. discrimination sensitivities at
the single-trial level in the explicit recognition task. These
two measures are not comparable (unless adequate methods
are used) and one cannot conclude a difference in underlying
sensitivities—an ITA—based on such results.

Nevertheless, this is the standard reasoning that is used
not only in contextual cueing but also in other paradigms
such as the probabilistic cueing paradigm (Jiang et al., 2018;
Jiang et al., 2013) and the additional singleton paradigm
(Wang & Theeuwes, 2018). But, as demonstrated in previ-
ous research by Franz and von Luxburg (2015) and Meyen
et al. (2022), the standard reasoning produced misleading
interpretations. These misleading interpretations occurred,
unfortunately, despite the problems of the standard reason-
ing being theoretically discussed throughout the past decades
(Eriksen, 1960; Reingold &Merikle, 1990; Reingold, 2004).
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Fig. 2 Flawed Standard Reasoning to Infer an Indirect Task Advan-
tage (ITA). (a) The standard reasoning to infer an ITA in contextual
cueing is based on two tasks. In the search task (right strand), a clear
RT effect between repeated vs. new stimulus configurations indicates
that participants have recognized the repeated configurations at some
level. In the explicit recognition task (left strand), participants’ explicit
report sensitivity is typically close to chance level. From this, the stan-
dard reasoning erroneously infers a higher sensitivity underlying search
task responses as compared with explicit recognition task responses; it

infers an ITA. Based on this apparent ITA and with additional theoreti-
cal assumptions (not shown in the figure), recognition in the search task
is inferred to be implicit. (b) The analogous reasoning is prevalent in
masked priming, where a clear congruency effect (right strand) together
with a close-to-chance-level sensitivity in detecting the prime stimulus
(left strand) is often erroneously thought to be evidence for an ITA and,
further, to be evidence for unconscious processing of the prime. Figure
adapted from Meyen et al. (2022).
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The fallacy of the standard reasoning is especially allur-
ing in contextual cueing because RT effects are typically
very large. They range from 50 ms (Chun & Jiang, 1998)
up to 466 ms (Zang et al., 2015). These RT effects appear
very strong when contrasted with the weak explicit recogni-
tion task sensitivity, which typically ranges from d ′ = 0.1
to d ′ = 0.3 (corresponding to 52–56%-correct, see Section
“Reanalysis of 20 Contextual Cueing Studies”). This cre-
ates a misleading impression of a difference in sensitivities
underlying the two tasks.

But the large RT effects are a consequence of the search
task having long overall RTs. In contextual cueing, partici-
pants have to make multiple fixations as opposed to priming
where presentation conditions are much more limited. As a
result, overall RTs as well as RT effects are scaled up. For
example, Zang et al. (2015)’s huge 466msRT effect occurred
in a condition with an overall mean RT of around 2500 ms.
Crucially, the long overall RTs are accompanied by larger
trial-by-trial standard deviations putting large RT effects into
perspective (see Miller & Ulrich, 2013, for a related argu-
ment in other paradigms). In contextual cueing, participants
have to search through many stimuli in the configurations.
In some trials, they are lucky and find the target stimulus
very fast. But in other trials, they have to search through
almost the entire stimulus configuration before finding the
target stimulus. This leads to a large variability in RTs from
trial to trial. This large trial-by-trial variability then attenu-
ates the large absolute RT effects: Relative effects such as the
sensitivity—which is here the absolute RT effect divided by
the trial-by-trial variability—may therefore be surprisingly
low and even comparable to the weak sensitivity measured
in the explicit recognition task. This does not contradict the
fact that these effects are very reliably found in contextual
cueing studies evenwith few number of participants, because
studies employ many hundreds of trials in the search tasks
thereby ameliorating the impact of trial-by-trial noise.

But if the sensitivity underlying the RT effects were as
weak as observed in the explicit recognition task, therewould
be no evidence for recognition that goes beyondwhat partici-
pants can explicitly report.Without an ITA there would be no
evidence for a second source of (implicit) recognition. The
following intuitive example serves to illustrate this fallacy of
the standard reasoning.

Illustration of the flaw: Baby-weight example

Consider a mock-experiment to illustrate the problem of the
standard reasoning (adapted fromMeyen et al., 2022). In this
mock-experiment, participants measure the body weights of
newborn baby girls and boys. In an indirect task trial, a partic-
ipant measures a baby’s weight and the observed response is
just that measured weight (corresponding to a single-trial RT
in the search task). A researcher evaluating weight responses

over many hundreds of trials will find a clear absolute weight
difference between baby girls and baby boys of around 100g
(Zeitlin et al., 2017). This corresponds to the typical result
in the search task where a clear and reliable RT difference of
sometimes around 100 ms is found.

In a direct task trial, a participant again measures the
weight of a baby but this time they has to judge whether this
baby is a girl or a boy (corresponding to the binary responses
required in the explicit recognition task). The biological sex
is hidden during the weight measurement so that the par-
ticipant has to make a guess solely based on the measured
weight. Even though there is a clearmean difference of 100g,
the variability of individual babies’ body weight is substan-
tial: With a trial-by-trial standard deviation of approximately
400g (Zeitlin et al., 2017), weight distributions heavily over-
lap and participants’ performance will be close to chance
level: a sensitivity of d ′ = 100 g

400 g = 0.25 (where chance
level is d ′ = 0). Even if participants apply the optimal, unbi-
ased decision criterion, hit rates (proportion of baby girls
correctly classified as girls) and false alarm rates (proportion
of baby boys incorrectly classified as girls) would be around
HR = 55% and FA = 45% corresponding to an overall
accuracy of 55%. Biased observers would show even lower
accuracies.

This is the typical pattern of results from which the stan-
dard reasoningwould infer implicit recognition (of the baby’s
sex) even though, in this thought experiment, participants
have full explicit information in both tasks (i.e., the body
weight of the babies). In one task, theweight information pro-
duces a clear mean effect, while in the other task it produces
a low sensitivity. One should therefore not infer a difference
based on this pattern of results. Researchers must rule out the
possibility that responses in both tasks can be explained by
the same (weak) sensitivity. Otherwise, claims about differ-
ent processes, for example, explicit vs. implicit recognition
may be incorrect.

The appropriate method: Sensitivity
comparison

We argue that the appropriate analysis to provide evidence
for implicit recognition requires a sensitivity comparison
(Meyen et al., 2022; called relative sensitivity paradigm by
Merikle & Reingold, 1991; Reingold, 2004; see also Erik-
sen, 1960): The first step of inferring implicit recognition
is to convincingly demonstrate that RTs in the search task
are more sensitive than responses in the explicit recognition
task—that is, an ITA must be empirically established. Such
an ITA would represent “excess” sensitivity in the search
task that goes beyond the sensitivity in participants’ explicit
responses.
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Note, however, that establishing an ITA is only a neces-
sary but not sufficient condition for implicit recognition as it
is only the empirical basis for further inferences. Establish-
ing an ITA is the first step to inferring implicit recognition.
In the second step, additional theoretical assumptions are
necessary to draw such conclusions. For example, among
other matters of validity, one needs to assume the measure of
explicit recognition to be exhaustive (Reingold & Merikle,
1988; Schmidt &Vorberg, 2006; Schmidt, 2007, 2015). That
is, participants’ explicit recognition performance should not
be hampered by low motivation or other issues.

To conduct the sensitivity comparison, we first need the
participants’ sensitivity in the explicit recognition task. This
is already routinely computed from participants’ hit rates
(repeated configurations correctly recognized as repeated)
and false alarm rates (new configurations mistaken as
repeated):

d ′
direct = �−1(HR) − �−1(FA). (1)

�−1 is the inverse cumulative normal density function.We
label this sensitivity “direct” because it is a direct measure
of recognition performance from explicit reports.

Next, we need an estimate for the sensitivity underlying
the search task data. Because the RT data of the search task
is typically taken as the basis for inferences about implicit
recognition, we consider an ideal observer analysis on this
data. Specifically, we assume participants had full explicit
knowledge of their RT data making optimal use of the RT
response in each trial to predict whether the stimulus con-
figuration in this trial was repeated or new. From these
predictions, we compute the sensitivity an ideal observer
would have obtained in the explicit recognition task and com-
pare it to participants’ actual explicit recognition sensitivity.
If this ideal observer analysis does not produce an ITA then
no real participant will and the RT data cannot be taken as
evidence for the existence of some form of recognition (i.e.,
implicit recognition) that goes beyond explicit recognition.

With RT data being well approximated by log-normal dis-
tributions (Ulrich & Miller, 1993), the ideal observer would
use a median-split classifier (see Supplement C in Meyen et
al., 2022). Themedian split determines for each trial whether
the RT response is relatively fast or relatively slow. Because
the standard reasoning bases inferences on the result of faster
mean RTs in repeated and slower mean RTs in new configu-
rations, the ideal observer would classify (predict) that faster
than median RT trials correspond to repeated configurations
and slower thanmedianRT trials to newconfigurations.Com-
paring these classifications against the true condition again
yields hit and false alarm rates which can be evaluated in
terms of sensitivity. Consequently, we use this ideal observer
analysis to derive an estimate for the sensitivity underlying

the search task:

d ′
indirect = �−1(HR) − �−1(FA). (2)

We label this sensitivity “indirect” because RT effects
between repeated and new conditions are an indirect way of
measuring recognition. The same analysis can be applied not
only to RTs but also other indirect measures of recognition
such as error rates, number of eye fixations, or any other trial-
by-trial measure that indicates a difference between repeated
vs. new configurations (e.g., see Schnepf et al., 2022, for an
application to EEG data). Here, we will stick to the most
prominent indirect measure: RTs. Computing the indirect
(search task) sensitivity in this way simulates a situation in
which participants have full explicit awareness of the RT
data, which is supposedly produced by implicit recognition.

The sensitivity comparison then requires a test for a dif-
ference between the two sensitivities:

d ′
difference = d ′

indirect − d ′
direct. (3)

A difference in favor of the search task (d ′
difference > 0)

constitutes an ITA which can be evaluated, for example,
by computing the mean sensitivity difference across partici-
pants and constructing a 95% confidence interval of the form
95% CI [a, b]. Only if 0 lies outside and below the inter-
val, 0 < a, there is empirical evidence for an ITA. This, of
course, corresponds to a classic significance test. Alterna-
tively, Bayes factors (BFs) can be computed to evaluate this
difference (Morey & Rouder, 2011; Rouder et al., 2009). In
addition to confidence intervals, we will compute BFs using
the standard implementation in the R package BayesFactor
(Morey et al., 2015). We test the null hypothesis (sensitivity
difference is zero) against the one-sided alternative hypoth-
esis of an ITA (sensitivity difference is above zero). We use
default priors of that package: a point null for the null hypoth-
esis vs. a truncated Cauchy prior with scale 1/

√
2 for the

alternative hypothesis.
If this sensitivity comparison does not support an ITA,

then participants could not have produced a higher sensitivity
in the explicit recognition task even with full knowledge of
their RT responses from the search task. Response in both
tasks could therefore plausibly stem from one and the same
source of recognition. Thus, without an ITA, inferring that
search task RT responses indicate a second source of implicit
recognition would be at odds with parsimony.
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Sensitivity comparison of studies based only
on reported statistics

The sensitivity comparison we just outlined uses a median
split and therefore requires full trial-by-trial data. For some
studies, this full data is difficult to obtain or not available
anymore (Wicherts et al., 2006). To nevertheless evaluate the
evidence for an ITA in these studies, we present a method to
estimate the indirect task sensitivity by only reported statis-
tics from those studies. In particular, we will use the reported
test statistic of a paired t test evaluating theRT effect between
repeated and new configurations. From this t statistic, wewill
derive an unbiased estimate of the true search task sensitivity.
As this method was derived in detail before (Meyen et al.,
2022, Supplement D), we will only briefly sketch it here.

The true search task sensitivity—based on signal detec-
tion theory (Green & Swets, 1988)—is in our case the RT
effect � divided by the trial-by-trial RT standard deviation
σε: d ′

indirect, true = �/σε. We aim to estimate this sensitivity
froman available t statisticswhich tests theRTeffects against
0: t = �̂/SE where SE is the estimated standard error of
individual RT effects. The t statistic is not straightforwardly
converted to an estimate d ′

indirect. While the numerator fits
between d ′

indirect, true and t , the denominator does not. The
standard error SE in the t statistic is not easily transferred
into an estimate of the trial-by-trial standard deviation σε in
d ′
indirect, true. In particular, the standard error SE incorporates
two sources of variance, the desired trial-by-trial variance,
σ̂ 2

ε , but also the variance of RT effects between participants,
σ̂ 2
effect. The latter represents howmuch the cueing effects vary

from participant to participant. Following standard variance
decomposition (e.g., seeRouder&Haaf, 2018),we formalize
this relationship:

SE =
√

σ̂ 2
effect + 4

K σ̂ 2
ε

N
(4)

where N is the number of participants and K is the total
number of trials sampled per participant assuming balanced
sampling so that each condition is sampled with K/2 trials
per participant.

Relating t to d ′ is therefore an underdetermined problem
as a t value is generally consistent with a range of different
d ′ values. For a given t value, it is not clear to which degree
SE originated from trial-by-trial variance (σ̂ 2

ε ) vs. effect vari-
ance (σ̂ 2

effect). To solve this problem, we introduce a quantity,
q2, which determines the ratio between these two sources of

variability:

q2 = σ 2
effect

σ 2
ε

.

This variance ratioq2 is related to the single-trial reliability of
RTs. While typical reliability measures of RT effects depend
on the number of trials (more trials reduce noise and increase
the reliability of individual RT effects), our variance ratio q2

considers the noise incurred in a single trial. By defining q2

this way we can easily relate studies with different number
of trials.

Knowing the variance ratio q2 (and the number of par-
ticipants N and trials K ) of a reported t value solves the
problem of underdetermination. With q2, we can express the

standard error from Eq.4 as SE = σ̂ε

√
q2+ 4

K
N , invert it, and

obtain an estimate for the trial-by-trial standard deviation

σ̂ε =
√

N
q2+ 4

K
SE .

Then, based on the expected value of non-central t distri-
butions (Hogben, Pinkham, &Wilk, 1961), we can derive an
unbiased estimate for the underlying sensitivity:

d ′
indirect = t · cN ,K ,q2 , (5)

where the constant cN ,K ,q2 =
√

q2+ 4
K

N

√
2

N−1

�
(
N−1
2

)
�

(
N−2
2

) is

chosen such that the expected value of our estimator d ′
indirect

is the true underlying sensitivity, E[d ′
indirect] = d ′

indirect, true.
This reanalysis methods provides a way to estimate the

search task sensitivity based only on a reported t value
and knowledge of the variance ratio q2. We provide an
easy to access implementation onhttp://www.ecogsci.cs.uni-
tuebingen.de/ITAcalculator/. For the following reanalyses,
we will use the value q2 = 0.09, which we will justify in the
following section.

Estimating the variance ratio q2

We will use the data from several studies where we do have
access to the full trial-by-trial data to estimate q2. More
precisely, we will derive an estimator that will likely over-
estimate this variance ratio thereby overestimating d ′

indirect
because q2 appears in the constant of Eq.5 in the numerator.
Overestimating the search task sensitivity d ′

indirect, in turn,
increases the chances of confirming an ITA in our reanaly-
sis. Conversely, this strengthens the conclusion of an absence
of an ITA if none is found (see next section: “Benefit-of-the-
Doubt Approach”).
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To estimate q2 from the trial-by-trial data, we must esti-
mate two variances: σ̂ 2

ε and σ̂ 2
effect. For the former, we

compute the variances of RTs for each participant × con-
dition (repeated/new) combination and pool those variance
into a single estimate of the trial-by-trial variance, σ̂ 2

ε . Based
on this and the observed standard error of RT effects, we
invert Eq.4 to obtain the estimated between-subject variance
σ̂ 2
effect = N · SE2 − 4

K σ̂ 2
ε . This effectively subtracts the

amount of variability that would be expected purely based
on trial-by-trial noise and leaves the variability that is due to
underlying difference in trueRT effects between participants.
Thus, we obtain the variance ratio estimator:

q̂2 = N · SE2 − 4
K σ̂ 2

ε

σ̂ 2
ε

. (6)

There were five studies from which we obtained full trial-
by-trial data (Vadillo et al., 2022; Xie, Chen, & Zang, 2020;
Zhao & Ren, 2020; Conci & von Mühlenen, 2011; Colagiuri
&Livesey, 2016).Each study containedmultiple experiments
and conditions inwhichwe derived estimates for q2 as shown
in Fig. 3. Although q2 is a ratio of variances and therefore
must have a non-negative true value, some estimates of q2

were negative. This happens when the standard error SE is
lower than what would be expected based on the trial-by-trial

noise alone ( 4K σ̂ 2
ε , see Eq.4). This can happen due to mea-

surement noise when, by chance, participants’ RT effects are
more similar than expected by chance. Allowing for negative
values keeps the numerator of Eq.6 unbiased.

Almost all estimated variance ratios fall below q̂2 < 0.09.
Based on this, it is safe to assume that other studies—for
which the trial-by-trial data is missing—will also have a
smaller q2. We will therefore assume q2 = 0.09 for those
other studies. Additionally, in Appendix A, we use differ-
ent q2 assumptions to calculate the main result to gauge the
impact of this assumption. Results of the only outlier (Exp.
7 of Conci & von Mühlenen, 2011) are further addressed in
the discussion.

At first glance, it is unclear whether q2 = 0.09 is a plausi-
ble value. But a sanity check can easily be done by noting that
the non-squared value q is the standard deviation of the true
individual sensitivities (see Supplement D in Meyen et al.,
2022). The assumption q2 = 0.09 = 0.32 ⇐⇒ q = 0.3
is equivalent to assuming that true individual search task
sensitivities vary between participants at most with a stan-
dard deviation of 0.3. This is a reasonable assumption when
the mean sensitivities are small with mean values around
d ′
indirect = 0.3 (see empty circles in the left subplot of Fig. 4).
Note that q refers to the standard deviation of true sensi-

tivities; q is the standard deviation of d ′
indirect when infinitely

Fig. 3 Variance Ratio q2

Estimates from Trial-By-Trial
Data. From the full trial-by-trial
data of five studies we estimate
q2 = σ 2

effect/σ
2
ε . Except for a

single outlier, all observed ratios
fall below 0.09. Thus, we adopt
q2 = 0.09 as an assumption for
our reanalyses of studies where
full trial-by-trial data is missing.
Using a high value like this
increases the likelihood of
confirming ITAs, see Section
“Benefit-of-the-Doubt
Approach”. Study labels are
ordered according to their level
of q2. The diameter of the points
is proportional to the log of the
sample size
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many trials were sampled. Computing the standard devia-
tion of observed search task sensitivities via the median split
method will be larger due to additional measurement noise.
Note also that we used a different (larger) value for q2 in the
reanalysis of priming studies (Meyen et al., 2022). Priming
studies and contextual cueing studies differ in terms of their
overall RT effects and also in the proportion of trial-by-trial
noise vs. between-subject variances, such that adapting the
variance ratio for the contextual cueing paradigm was nec-
essary.

Benefit-of-the-doubt approach

There are some choices made in this analysis method that
need to be discussed. All of these choices are made in a
way that gives the ITA the benefit of the doubt by increasing
the estimated search task sensitivity, d ′

indirect. In turn, our
argument becomes stronger when we do not find an ITA
although our analysis was biased in favor of finding it.

1. The contextual cueing effect on RTs unfolds over time.
Although the absolute difference between repeated and
new configurations often plateaus rapidly, the overall
RTs also decrease throughout the course of the exper-
iment. With faster overall RTs, the standard deviation
of RTs reduces. Thus, the latest stages of an experiment
should yield the largest RT differences, smallest standard
deviation, and thus the largest sensitivities. Therefore,
whenever possible, we reanalyzeRTs from the last blocks
of an experiment (typically labeled as the last epoch).
Note that reducing the reanalysis to only the last trials of
an experiment increases standard errors. But decreasing
standard errors by taking more trials into account would
also decrease estimated search task sensitivities d ′

indirect
producing numerically less evidence for an ITA.

2. Themedian is computed for each participant individually.
This allows for flexible classification adapted to each par-
ticipant’s speed. Otherwise, a median computed over all
participants would wash out the sensitivity. For example,
consider a participant with very fast overall RTs. Their
RTs in the new condition would be relatively slow when
compared to only their median RT and, therefore, be cor-
rectly classified as coming from the new condition. But
when compared to the median RT over all participants,
their RTs would still be relatively fast and, therefore,
incorrectly classified as coming from the repeated condi-
tion. In thisway, using themedianRTover all participants
would lead tomore incorrect classifications.Adapting the
classification criterion to the individual participants gives
the ITA an advantage by avoiding an underestimation of
the search task sensitivity.

3. The median split can be proven to be optimal for log-
normally distributed RTs (see Supplementary Material C
in Meyen et al., 2022; results for ex-Gaussian instead of
log-normal distributionswill differ onlymarginally). The
optimal classification approach maximizes the search
task sensitivity in our reanalysis. More complex, non-
linear methods for classification are conceivable (Panis
& Schmidt, 2016) but contextual cueing results are typi-
cally evaluated only based on amean difference in RTs of
repeated vs. new configurations. Thus, nonlinear meth-
ods would need further theoretical justification.

4. Taking the median over all observed RTs across blocks
from a participant puts the indirect sensitivity estimate
further into an advantage because it allows classifica-
tions based on a stable, optimal criterion computed from
many blocks already for the first trials. In contrast, the
explicit recognition task requires participants to set their
internal criterion on the fly before the rest of the trials are
presented in order to decide between recognized vs. new
configurations. This makes the internal criterion for early
trials less reliable and possibly reduces sensitivity in the
explicit recognition task (Phillips, 2021). Thus, taking the
median across all trials of many blocks of a participant
in the search task—instead of a running median—favors
finding an ITA.

5. As in the masked priming paradigm, some studies
exclude participants based on a high explicit recognition
task performance. This incurs the well known problem
of regression to the mean (Barnett et al., 2004; Shanks,
2017): Assuming that participants are sampled in two
tasks in which they exhibit the same sensitivity, exclud-
ing participants with a high sensitivity in one task biases
results towards finding a sensitivity difference in favor of
the other task. Except for one extreme case thatwe did not
include in our reanalysis because 6 out of 16 participants
(38%) were excluded (Zang et al., 2016, Experiment 2),
we left these problematic results in our reanalysis poten-
tially further compounding bias in favor of an ITA.

6. We chose a conservative estimate for q2, as described in
the previous section. This way, we most likely overesti-
mate the true q2 in other studies. Since larger q2 lead to
larger estimates of the search task sensitivity d ′

indirect, we
also overestimate d ′

indirect and, thereby, overestimate the
evidence for an ITA.

With these methodological choices, the search task sen-
sitivity d ′

indirect is likely to be overestimated. This makes it
more likely to produce empirical evidence in favor of an ITA.
With that, we make our critique of ITAs conservative.
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Study selection

We reanalyzed a total of 20 studies. At first and to establish
whether there is a problem in the contextual cueing literature,
we exploratively reanalyzed five studies that were fundamen-
tal to thefield (e.g., Chun&Jiang, 1998) and easily accessible
(e.g., Zhao & Ren, 2020), see Supplement A for details. We
then chose to reanalyze a set of studies that was previously
considered in the reanalysis of Vadillo et al. (2016). To avoid
well-knownproblems ofmotivated data analysis (Kerr, 1998;
Nosek et al., 2018; Simmons et al., 2011; Wagenmakers et
al., 2012), we preregistered this part of the reanalysis (https://
aspredicted.org/rw6tt.pdf) including those studies that either
reported the statistics necessary for our reanalysis or provided
their full trial-by-trial data.

With that, we reanalyzed 12 more studies based on their
reported statistics and three more studies based on their full
data, which we received after contacting the corresponding
authors. We had contacted nine corresponding authors but
only these three responses were positive. Taken together, we
were able to reanalyze 15 more studies from our preregistra-
tion. We did not reanalyze any additional studies. All details
on the studies as well as the reanalysis results can be found
in Supplement A.

Sensitivity comparison results

We illustrate our results by first reanalyzing one particular
study as an example. Then, we show results for all reanalyzed
studies in our main Fig. 4. Details of all reanalyzed studies
can be found in Supplement A.

Example reanalysis based on reported statistics

For our example reanalysis, we focus on Experiment 2 of
the seminal study by Chun and Jiang (1998). The other
experiments in the study did not feature a direct recogni-
tion task (Experiments 1, 3, 4, and 6) or produced analogous
results (Experiment 5). In Experiment 2, N = 14 participants
conducted Kindirect = 96 trials in each of the six epochs
of the search task. Afterwards, each participant conducted
Kdirect = 24 trials in the explicit recognition task.

Chun and Jiang (1998) found the typical pattern of results:
A clear RT effect in the search task and a close to chance
sensitivity in the explicit recognition task. In the last epoch
of the search task, participants responded 50 ms faster to
repeated than new configurations, t(13) = 2.61 (their Table
2 on p. 42). The explicit recognition task sensitivity was
d ′
direct = 0.11 which we computed from the reported hit
rate HR = 39.3% and false alarm rate FA = 35.1%. Fol-

lowing the sensitivity comparison approach, we estimate the
search task sensitivity from the t value by computing con-
stant cN=14,K=96,q2=0.09 = 0.091 and multiplying it to the
t value so that we get d ′

indirect = t · cN=14,K=96,q2=0.09 =
2.61 ·0.091 = 0.24 (corresponding to the empty circle in the
first row of Fig. 4).

There is a numerical difference between these two sen-
sitivities hinting towards an ITA, d ′

difference = d ′
indirect −

d ′
direct = 0.24−0.11 = 0.13 (point in the first row of the right
subplot in Fig. 4). But taking measurement error into account
(see Supplement D in Meyen et al., 2022, for the derivation),
we find a large standard error SEdifference = 0.20 such that
the numerical difference can plausibly stem from measure-
ment error, t(13) = 0.66, p = .52, 95% CI [−0.29, 0.55]
(this confidence interval corresponds to the error bars in the
first row in the right subplot in Fig. 4). Bayes factor analysis
tends to favor the null hypothesis of no ITA, BF10 = 0.47
(first row in Fig. 6).

By any standard, this numerical difference is not to be con-
sidered as a conclusive demonstration of higher sensitivity
in the search task as compared with the explicit recogni-
tion task. But this is the strongest result from the original
study! Reanalyzing any other epoch from Experiment 2 or
the results from Experiment 5 leads to even weaker evidence
for an ITA. Even under the favoring conditions of our benefit-
of-the-doubt approach, the seminal study by Chun and Jiang
(1998) presents only weak to no evidence for an ITA.

Reanalysis of 20 contextual cueing studies

Finally, we applied our reanalysis to a total of 20 studies with
56 conditions and experiments. Our aim was to gauge how
much evidence for an ITA there is in each study. Many but
not all of these studies (15 out of 20) inferred that contextual
cueing was implicit. Some of these studies additionally use
correlation-based arguments, which we will address in the
next section. For now, we want to determine whether there
is evidence for ITAs.

Figure 4 shows our main result: For each experiment and
condition in the reanalyzed studies, we show in the left sub-
plot sensitivity estimates for the explicit recognition task
(direct, filled circles) and the search task task (indirect, empty
circles). Already here it is apparent that, in many cases, the
search task sensitivity is even numerically smaller than the
explicit recognition task sensitivity. In the right subplot we
show the sensitivity differences (indirect - direct) together
with their 95% confidence intervals. Almost all of these con-
fidence intervals include the vertical 0 line and many scatter
to the left.
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Fig. 4 ITA Reanalysis Results. Sensitivities in 20 studies on contextual
cueing. We plot sensitivities from the search task (indirect) and explicit
recognition task (direct) on the left and their difference (indirect - direct)
on the right. Error bars indicate 95% confidence intervals. Evidence for

an ITA would be indicated by a confidence interval lying to the right of
the 0 line without including the zero. All numerical values and label-
study correspondence can be found in Supplement A. Studies for which
we analyzed the full trial-by-trial data are marked in bold
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No study shows consistent evidence for an ITA through-
out its experiments and conditions. In fact, the majority of
the studies did not provide evidence for an ITA in any of their
experiments or conditions (19 out of 20 studies). There was
only one from the 20 reanalyzed studies for which we found
evidence for an ITA in half of their conditions (Conci & von
Mühlenen, 2011, labeled CM-2011). The same experiments
had another condition in which there was no ITA present.
Nevertheless the study does not differentiate between these
conditions (“no explicit awareness of the display repetitions”,
p. 225). In contrast, another study (Zhao&Ren, 2020, labeled
ZR-2020) shows the opposite result of an ITA in two condi-
tions: a clearly higher sensitivity in the explicit recognition
task than in the search task.

Even without taking measurement errors into account,
only 37 of the 56 reanalyzed experiments and conditions
(66%) showed a numerical difference of sensitivities in favor
of an ITA—which has to be seen in light of our benefit-of-
the-doubt approach that tends to overestimate evidence for
an ITA.

To further judge the evidence for ITAs, we show the same
data in Fig. 5 as a funnel plot (Sterne et al., 2011). The funnel
plot relates the observed sensitivity differences (x-axis) to
their standard error (y-axis). More precise measurements of
the sensitivity differences (smaller SE, upwards in the plot)
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Fig. 5 Funnel Plot of ITAReanalysis Results. The funnel plot shows the
sensitivity differences (d ′

difference = d ′
indirect − d ′

direct) in relation to their
standard errors. Each data point corresponds to one experiment or con-
dition from the reanalyzed studies. More precisely measured sensitivity
differences (smaller SEs, towards the top) converge closer to 0. Dotted
and solid lines show significant deviations from 0 for significance levels
of 5% and 1%, respectively

lead to mean differences converging to 0 (where the funnel
is centered at)—indicating no ITA.

So far, we have considered the absence of evidence for
ITAs. Because providing evidence for the absence of an ITA
is less straight-forward in Frequentist statistics, we addition-
ally provide a Bayesian reanalysis. Figure6 shows the Bayes
factors when testing the sensitivity difference against zero.
We found 28 out of 56 conditions and experiments provide
evidence against the existence of an ITA (BF10 < 1/3).
Another 24 conditions and experiments were inconclusive
(1/3 < BF10 < 3). Only the previously mentioned study
(Conci & von Mühlenen, 2011, labeled CM-2011) provided
four conditions with more than anecdotal evidence for ITAs
(BF10 > 3). That is, the Bayesian analysis supports evi-
dence against ITAs in the majority of studies. These results
are consistent with the Frequentist analysis from above fur-
ther supporting the overall absence of evidence for an ITA.

Validation of reanalysis method based on reported
statistics

Now we demonstrate that our results based on the reanal-
ysis from reported statistics matches that from the full
trial-by-trial data. For this validation, we conducted both
reanalyses on the data from Colagiuri and Livesey (2016)
which the authors shared with us. The results are displayed
in Fig. 7. Except for small numerical differences both reanal-
yses closely match.

Interim summary

Taken together, the evidence for ITAs isweak to non-existent.
RTs in the search task seem to be, for the overwhelm-
ing majority, not more sensitive than participants’ explicit
reports. No study presents consistent evidence for an ITA
throughout their experiments and conditions (Fig. 4). The
more precisely a sensitivity difference is measured, the more
it converges to 0 (Fig. 5). Bayesian statistics tend to favor the
null hypothesis of no difference in the majority of the cases
(Fig. 6). In the context of our benefit-of-the-doubt approach
in which we set up our analysis to favor finding an ITA, these
results make it very plausible that the sensitivity underlying
search task RTs is not larger than the explicit recognition task
sensitivity. In short, there seems to be no consistent evidence
for ITAs.

These analyses so far were done on an aggregate level
across all participants. Next, we turn to an individual ITA
analysis. This individual-level analysis is becoming theoret-
ically more relevant as it relates to recent correlation-based
arguments for implicit recognition. We will first explain this
reasoning, point out two of its issues, and then show how our
sensitivity analysis can be used to evaluate these correlation-
based arguments as well.
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Fig. 6 Bayes Factors Suggest
Evidence Against ITAs. Bayes
factors (BFs) for the sensitivity
differences as shown in Fig. 4.
BFs larger than 3 indicate
evidence for an ITA, BFs
smaller than 1/3 indicate
evidence against an ITA, and BF
between 1/3 and 3 are
inconclusive. Mostly, BFs point
towards evidence for no ITA.
Studies for which we analyzed
the full trial-by-trial data are
marked in bold. For a further,
in-depth discussion of Bayes
factors with respect to the
standard reasoning, see also
Appendix B. BFs are drawn to
log scale
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Correlation-based arguments to infer
implicit recognition

We now turn to arguments that are based on the empirical
observation that explicit recognition sensitivity and search
task RT effects show only a low correlation. The intuitive
appeal of this reasoning: When search task RT effects are
practically independent of explicit recognition, there must be
a driver of search task effects that is independent of explicit
recognition, which is then thought to be implicit recognition.

A very strong empirical demonstration of a low corre-
lation is presented by Colagiuri and Livesey (2016). In a
commendable sample of N = 766 (Experiment 3), Colag-
iuri and Livesey found a correlation as low as r = .03 from
which they inferred that the search task RT effects are inde-

pendent of explicit recognition. Other studies find the same
result and have argued in a similar manner (e.g., Geyer et
al., 2010; Conci & von Mühlenen, 2011; Geringswald et al.,
2012; Geringswald et al., 2013; Zang et al., 2015; Chun &
Jiang, 1998; Chun & Phelps, 1999).

The problems of interpreting low correlations as
implicit recognition

First, it is important to note that observing a low correla-
tion between search task RT effects and explicit recognition
sensitivity does not immediately show that the underlying
constructs are independent or that there are two distinct con-
structs (i.e., an explicit and an implicit form of recognition).

123

918



Psychonomic Bulletin & Review (2024) 31:907–930

Se
ns

iti
vi

ty
 D

iff
er

en
ce

−0
.3

−0
.2

−0
.1

0.
0

0.
1

0.
2

0.
3

d'
in

di
re

ct
 −

 
d'

di
re

ct

Exp. 1 Exp. 2 Exp. 3

Full Trial−By−Trial Data
Reported Statistics

Fig. 7 Comparison of Reanalysis Results Based on Full Trial-By-Trial
Data vs. OnlyReported Statistics inColagiuri andLivesey (2016). Light
grey bars show results of the sensitivity comparison based on the full
data (more accurate) while dark grey bars show results based on the
reported statistics (using the assumption q2 = 0.09). In Experiment 1
and 3, the estimate based on reported statistics goes in favor of an ITA
(sensitivity difference d ′

difference is overestimated). This will happen in
most cases. In Experiment 2, the reported statistics underestimate the
sensitivity difference, which can happen in few cases due to measure-
ment error. Error bars indicate 95% confidence intervals

Vadillo et al. (2022) have discussed the issue of reliability:
Search task RT effects incorporate a large degree of noise
(e.g., motor noise) and the explicit recognition task features
typically only very few trials per participant. Thismakes both
measures inherently unreliable. But unreliable measures do
not even correlate highly with themselves. The same par-
ticipant, when measured again, can display a substantially
different RT effect or a different explicit recognition sensi-
tivity due to this measurement unreliability. Therefore, one
cannot expect a high correlation between search task RT
effects and explicit recognition performance in the first place.
When correcting for the low reliability of these measures,
Vadillo et al. showed that no strong evidence for implicit
recognition emerges from the current data (see also Malejka
et al., 2021).

Also, there is evidence that a positive correlation exists
(Annac et al., 2019;Geyer et al., 2020) but, often, small corre-
lations are overlooked. For example, consider that Schankin
et al. (2008) found r = .29 in a sample of N = 16 par-
ticipants and inferred that there is no relationship between
explicit recognition and search task RT effects (see similar
results in Rosero et al., 2019, and Zellin et al., 2013). But
the standard error of a correlation in a sample of N = 16
participants can be up to approximately SE = 0.28 and the
95% confidence interval would be consistent with rather high
correlations, 95% CI [−0.24, 0.69] (Fisher, 1948). Clearly,
this result is not conclusive evidence for the absence of a

small correlation, that can be substantial after accounting for
measurement error.

Second, caution is necessary when interpreting low cor-
relations as evidence for implicit recognition even after
reliability issues are taken into account. Loosely relatedmea-
sures do not necessarily imply loosely related underlying
constructs due to validity issues.Wewant to draw attention to
two such major issues here. Both issues substantially impact
the interpretations of low correlations; both raise doubt about
whether a low correlation can be a valid basis for inferring
implicit recognition.

Variability in learning rates diminishes correlations

Measures such as RT effects are imperfect in capturing the
target construct, implicit recognition, because they can be
confounded by other constructs. Consider again the study by
Colagiuri and Livesey (2016). They measured search task
RT effects as an average RT effect across all blocks through-
out their whole experiment. Including all blocks introduces
a confound: Their RT effects do not only incorporate recog-
nition of the repeated configurations but also learning rates.
See Fig. 8 for an illustration. Suppose participants vary in
their learning rates, that is, some develop an RT effect
slowly (Participant A in the figure) while others develop it
fast (Participant B). Variability in learning rates have been
demonstrated for different presentation conditions (Tseng et
al., 2011) so it is plausible that they vary between participants
aswell—somemay learn faster than others. Then, even if two
participants reach the same RT effect at the end of the exper-
iment (corresponding to the same level of recognition), their
mean RT effects will vary.

This variability introduced by different learning rates
diminishes the correlation between RT effects and recog-
nition. But then, a loose correlation is not clear evidence for
independent sources of recognition; it can plausibly (in parts)
stem from learning rate variability.

Nonlinearity and nonmonotonicity diminishes correlations

A nonlinear functional relationship between the two mea-
sures can additionally reduce correlations even if both
measures are entirely derived from the same source. And the
relation between search task RT effects and explicit recogni-
tion is almost certainly nonlinear: One would not expect RT
effects to continue increasing as explicit recognition sensi-
tivities increase. Instead, RT effects will plateau inducing a
nonlinear relationship. Such nonlinearities are demonstrated
in priming, for example, by Zerweck et al. (2021) and Kinder
and Shanks (2003), who even show RT effects and direct
measures to be related by an inverse U-shape! In contex-
tual cueing, Colagiuri and Livesey (2016) even suggest a
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Fig. 8 Variability in learning rate affects mean RT effect. Hypothetical
data of two participants, A and B. Both participants reach the same con-
textual cueing RT effect in Epoch 12 as indicated by the dotted lines.
However, A’s RT effect increases later than B’s. Thus, the mean effects
averaged across epochs differ: A has a lowermeanRT effect thanB indi-

cated by the grey dashed lines. Assuming that the RT effect at the end of
the experiment (Epoch 12) corresponds to a participant’s recognition,
the variability in the speed of RT effect emergence induces variability
in the mean RT effects which in turn diminishes the correlation between
recognition and mean RT effects

mechanism for this (p. 2008): “Another possibility is that
recognition of a repeated pattern during the visual search
task slows down performance because additional mental pro-
cesses are engaged.”

However, the current debate in contextual cueing and other
paradigms (Berry et al., 2012; Colagiuri & Livesey, 2016;
Malejka et al., 2021; Vadillo et al., 2016, 2022) is based on
a linear single-source model (Berry et al., 2006; Berry et al.,
2008a; Berry et al., 2006; Berry et al., 2008b) and computes
correlations, a measure of linear relationship strength. If the
data does not seem to support such a linear relationship, it is
indeed one possibility that search task RT effects and explicit
recognition sensitivities are independent—which would lend
credibility to the notion of implicit recognition. But it is
another possibility that the RT effects are derived from
explicit recognition in a nonlinear manner. To conclusively
infer the former, the latter must be ruled out. Convincing
evidence for this is still lacking in the contextual cueing
paradigm.

Sensitivity comparison to the rescue: Replace
correlations by individual ITAs

One solution to the quandary of interpreting correlations as
evidence for independent processes is, again, the sensitivity
comparison. The idea is to test for ITAs but now on the
individual level to answer the question: Are search task sen-

sitivities higher than explicit recognition task sensitivities for
individual participants? If empirical ITAs could be demon-
strated for a sizeable proportion of participants, then the
empirical first step for inferring implicit recognition is estab-
lished. A second interpretation step is then required in which
additional assumptions need to bemade and issues of validity
need to be discussed.

With no ITAs at the individual level, even a very low or
zero correlation can not definitively rule out the possibility
of RT effects being fully driven by explicit recognition. It is
possible that each individual participant’sRTeffect is entirely
derived from their explicit recognition task sensitivity but
that the above mentioned problems nevertheless produce a
low correlation.

Thus, we evaluated evidence for individual ITAs in the
data provided byColagiuri andLivesey (2016). Because their
Experiment 3 has such an exceptionally large sample size
(N = 766), the proportion of individual participants demon-
strating an ITA can be investigated with sufficient precision.
Since each participant performed multiple trials per task,
we used a bootstrap method to estimate standard errors for
each participant. We then performed one-sided t tests with
α = 5% comparing each participants’ individual sensitivity
difference against 0. Results of this analysis showed that only
6.3% (95% CI [4.7, 8.2]) of the participants (48 out of 766
participants) showed a significant ITA. This proportion lies
well within the range of false positives (α = 5%) that we
would expect if no participant had a true ITA.
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To summarize, there is no evidence for individual ITAs
in this experiment. Despite the low correlation between RT
effects and explicit recognition sensitivity, we did not find
evidence for the existence of participants with search task
sensitivity beyond what they can explicitly report.

Discussion

We have shown that the standard reasoning to infer uncon-
scious processing in the contextual cueing paradigm is
flawed. In the same way in which it has produced mis-
leading interpretations in masked priming studies, it also
led to problematic interpretations in the contextual cueing
paradigm where ITAs are frequently assumed for making
inferences about implicit recognition. Under scrutiny, almost
no ITAs can be found in these studies: The appropriate sensi-
tivity comparison almost never indicates that RTs are (up to
measurement error) more sensitive than participants’ explicit
reports. In short, there is no consistent evidence for ITAs. But
without ITAs, a simple and parsimonious interpretation of the
current data is that the same source ofweak recognition drives
participants’ responses in both, the explicit recognition task
and the search task. Of course, it is still possible that a sec-
ond source of implicit recognition drives contextual cueing
effects but more convincing results have to be produced to
make such a strong claim. As it stands, not much has changed
in the past decade (Berry et al., 2010, see also Eriksen, 1960):
Genuine evidence for implicit recognition beyond what par-
ticipants can explicitly report is—in almost all cases—still
lacking.

In our reanalysis,we found four (out of 56) results inwhich
an ITA emerged and all these results came from a single study
(Conci & von Mühlenen, 2011). But as we noted earlier,
finding an ITA is only the first step in inferring implicit recog-
nition. Other issues of validity must be considered. Here,
one issue is that all four of those conditions showed large
RT effects (151-211 ms, ps < .014) between repeated and
new configurations in the very first block already. That is,
even before the repeated displays were shown a second time,
responses to them were faster. These RT effects in the first
block cannot be due to recognition: Recognition can only
occur when the displays are repeated for the first time in
block two. Thus, RT effects likely stem from a source other
than recognition, for example, from the repeated displays
being initially easier to solve than the new displays. There-
fore, the ITAs in these four conditions do not provide clear
evidence for implicit recognition either.

We have additionally shown how correlation-based argu-
ments of inferring two independent sources of recognition,
one explicit and one implicit, can also go wrong. There are

multiple factors that can diminish correlations even when
there is only one source of recognition. For now, one source
of recognition suffices to explain the current data in the search
task, which should be the default hypothesis (see Phillips,
2021, for this general argument). The onus is on the pro-
ponents of implicit recognition to present strong evidence
ruling out this plausible interpretation.

Should results be aggregated into ameta-analysis?

In our reanalysis we have abstained from conducting a
meta-analysis. Aggregating over the studies would not be
appropriate because they vastly differ in many regards. Some
studies use different population such as patientswith amnesia
(Chun&Phelps, 1999), patients with brain lesions (Manns&
Squire, 2001), or children (Dixon et al., 2010). Others drasti-
cally vary the experimental design in which they present the
stimulus displays, for example, with a simulated visual sco-
toma (Geringswald et al., 2012). Aggregating results across
these studies would not appropriately account for their diver-
gent research questions.

More importantly, due to our benefit-of-the-doubt approach,
a meta-analysis would accumulate the bias in favor of an ITA
that we introducedwith our benevolent reanalysis strategy. In
contrast, our goal here was to evaluate the evidence for ITAs
in each of the studies individually. A meta-analysis should
not be necessary because each study claiming implicit recog-
nition based on their results should provide self-contained
evidence for an ITA. But note that not all studies inferred
contextual cueing to be implicit, see SupplementA for details
on each study’s interpretations. Therefore, we abstain from
reporting aggregated statistics such as averaging sensitivity
differences or multiplying Bayes factors across studies.

Another avenue of research is to investigate ITAs on a
group level. It is already known that there are group dif-
ferences between, for example, young and old participants
with regard to cueing effects (Howard et al., 2004). There are
also differences between healthy participants and memory-
impaired patients in some (Manns & Squire, 2001) but not
all studies (Chun & Phelps, 1999; Barnes et al., 2010).
Building on these already known difference in contextual
cueing effects has the potential of identifying ITAs in specific
subgroups. Yet another approach is to establish double disso-
ciations (Schmidt & Vorberg, 2006; Schmidt, 2007; Schmidt
& Biafora, 2022): By demonstrating that explicit recognition
sensitivity and RT effects can be independently manipu-
lated, evidence for implicit recognition may be established
(e.g., Biafora & Schmidt, 2020 show a dissociation in prim-
ing). However, for contextual cueing, this evidence is still
lacking.
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Converging evidence from non-binary explicit
recognition tasks

In line with our results, other studies using non-binary
explicit recognition tasks have also produced evidence ques-
tioning the implicit nature of contextual cueing (Annac et al.,
2019; Kroell et al., 2019; Geyer et al., 2020). These studies
have used more refined recognition tasks: They employed
target generation tasks in which participants see a display
where the target T is replaced by a distractor L and have to
guess where the target T was in the original display (Jiang &
Chun, 2003). Because such tasks better capture participants’
explicit recognition capabilities, these studies usually show
above chance recognition performance as well as sizeable
correlationswith the search taskRTeffects.Moreover,Annac
et al. (2019) computed z-scores in the explicit recognition and
the search task. They also found no difference between the
tasks. But note that z-scores are affected by the number of
trials employed in a task. This limits the interpretability of
their result while our sensitivity comparison does not suf-
fer from this problem. While sampling more trials leads to
an increase in z-scores, sensitivities are only measured more
precisely and their mean value does not change. Neverthe-
less, these findings - combined with our results - make it even
more plausible that contextual cueing is driven by (a small
amount of) explicit recognition.

As of now, our sensitivity comparison can only be applied
to binary explicit recognition tasks, which is why we did
not reanalyze studies using quadrant generation tasks here.
Futurework has to relateRTeffects to the explicit recognition
performance in these more complex tasks.

Restricting the sensitivity comparison to learned
displays

A suggestion during the review process was to apply the
sensitivity comparison on only a subset of learned displays
because it seems that contextual cueing RT effects stem from
only a few of the repeated displays that are learned while the
other displays are not learned. Previous studies identified
which displays were learned based on comparably large RT
effects or, alternatively, a high explicit recognition task per-
formance for particular repeated displays (Geyer et al., 2010,
2020; Smyth & Shanks, 2008). They typically find that only
2-4 out of 8 repeated displays are learned. However, conduct-
ing further analyses–such as our sensitivity comparison–on
the displays selected this way creates a problem of regres-
sion to the mean (Shanks, 2017): For example, when first
selecting repeated displays based large reaction time effects
and then comparing the underlying sensitivity, it is to be
expected that a sensitivity difference appears simply due to
the selection procedure and even if there is no underlying
sensitivity difference. We nevertheless present these anal-

yses in Supplement B but caution to interpret the results.
Future research may provide appropriate methods to identify
learned displays without this methodological problem (e.g.,
by deliberately manipulating the displays as in Geyer et al.,
2020) and demonstrate convincing ITAs.

Note that the variance ratio parameter q2 is still mean-
ingful even if there was an underlying dichotomy of learned
vs. not learned displays. Whether a unimodal (all displays
learned relatively equally) or a bimodal distribution (learned
vs. not learned displays) underlies each participant’s mean
effect does not change how the between-subject variance
σ 2
effect is to be estimated. Therefore q2 does not change under

this consideration. It is conceivable that future research iso-
lating learned displays can produce situations with larger q2

and consistently find ITAs. However, this is not the case in
the reanalyzed studies.

Implications for interpretations about implicit
recognition

Some of the studies’ theoretical discussions must be revised
under the new light of missing ITAs. For example, Tseng et
al. (2011) have investigated similarities between implicit and
explicit learning in the contextual cueing paradigm finding
surprising similarities. Given the lack of evidence for ITAs,
onewould not distinguish between implicit vs. explicit learn-
ing in the first place but rather consider only one source of
learning. Then, the observed similarities do not come as a sur-
prise anymore. In another example, Chun and Jiang (2003)
remark that implicit learning can be long-lasting. This could
be considered surprising as implicit processes are assumed
to be short-lived but, if cueing effects stem from the same
source as explicit recognition responses, this again is not
surprising anymore. Kunar et al. (2006) observe that explicit
instructions can influence contextual cueing which, again, is
well within expectation if cueing is not assumed to be driven
by a separate, implicit source of recognition to begin with.

Wewant to stress that each studymakes valuable contribu-
tions in their own right. Many claims in those studies did not
pertain to the question of whether or not cueing was implicit.
By refuting current evidence for ITAs, we do not want to
diminish these contributions. Independent of the interpreta-
tions regarding the implicit nature of contextual cueing, there
is a plethora of relevant and valid findings in these studies.We
only question whether these findings should be interpreted
as implicit phenomena.

Limitations and strengths of the sensitivity
comparison

One weakness of our reanalysis method based on only the
reported statistics is that it incurs more measurement error
than an analysis based on the full trial-by-trial data. A trial-
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by-trial reanalysis of all studies in the contextual cueing
paradigm would be beyond the scope of this article. Future
efforts in the field are necessary to scrutinize the evidence
using trial-by-trial data. This will make measures of sensi-
tivity differences more precise (smaller error bars in Fig. 4).
But note that we used a liberal assumption on q2 so that,
when replacing this assumption by the trial-by-trial data, not
only precision but, likely, also numerical differences in favor
of an ITA will vanish.

Another concern with the sensitivity comparison is that
RTs in the search task are corrupted by neuro-muscular
noise. This reduces the observed sensitivity in this task.
The underlying sensitivity (before noise in the translation
from recognition to RT) may have been higher. With that,
an ITA may exist after accounting for this additional noise.
But it is on the proponents of implicit recognition to present
evidence for this. The strong claim about implicit recogni-
tion cannot be based on the mere assumption of an ITA in
some underlying measure—it has to be empirically demon-
strated. Moreover, it is possible that responses in the explicit
recognition task are also corrupted by additional noise in the
translation from recognition to an explicit response: When
recognition is weak, binary decisions are to a large degree
arbitrary and arbitrary decisions suffer from a similar kind
of noise as well (as, for example, demonstrated for readiness
potentials by Maoz et al., 2019, and Schurger et al., 2012).

The sensitivity analysis allows researchers to go beyond
the outdated significant/non-significant distinction in the
two tasks and move towards what has been labeled the
“new statistics” (Cumming, 2013, 2014; Cumming & Calin-
Jageman, 2016; Kruschke & Liddell, 2018; Wasserstein,
Schirm, & Lazar, 2019) by focusing on an estimation prob-
lem rather than a decision problem. The standard reasoning
looks at the two tasks, search task and explicit recognition
task, in separation and attempts to make decisions regard-
ing two questions: “Is there a contextual cueing effect?” and
“Is there explicit recognition present?” Usually, the answers
are yes, there is a contextual cueing effect, and no, there is
no explicit recognition. But this reasoning is erroneous as
we have shown. Notably, this is not only a problem of Fre-
quentist statistics; Bayesian statistics suffer from equivalent
problems albeit less severe (Sand & Nilsson, 2016; Dienes
& Overgaard, 2015)–see Appendix B for a demonstration
of the problems in Bayesian statistics. The solution is not
to replace one school of statistics with another but rather
to apply the appropriate comparative test in either of them.
Here, the sensitivity comparison replaces the two decision
problems and puts in their place an estimation problem: How
large is the difference in sensitivities between explicit recog-
nition and search task RT effects? How much recognition is
there beyond what participants can explicitly report? Mea-
suring this sensitivity difference allows the field to progress
into a more empirical direction.

Conclusion

Adopting the sensitivity comparison to demonstrate an ITA
will help the contextual cueing paradigm to establish itself in
the larger field of unconscious and implicit memory research.
As of now, this field is plagued by doubts of not being rigor-
ous enough (Michel et al., 2018). Without reliable inference
methods, contextual cueing runs the risk of being one of the
many paradigms promising but ultimately failing to provide
convincing empirical evidence for implicit processes (Newell
& Shanks, 2014).
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Appendix A

Reanalysis with different q2 values

The reanalysis we conducted is based on one key variable,
q2.We took great care in estimating this variable, takingmul-
tiple experiments into consideration and used an estimation
that likely overestimated q2 to not produce overly critical
reanalysis results (see Fig. 3 in the main text and section

“Benefit-of-the-Doubt Approach”). Nevertheless, one may
ask how the analysis would have looked if we assumed a dif-
ferent q2 value instead. In our main reanalysis, we used the
value q2 = 0.09. Here, we present our main results figure
(Fig. 4) in two variants: One with a lower and more plausi-
ble q2 = 0.0225 in Fig. 9 and one with a larger q2 = 0.25
in Fig. 10. By and large, these analyses also do not provide
convincing evidence for ITAs.

Fig. 9 ITA Reanalysis Results.
Similar to Fig. 4 but with
q2 = 0.0225 = 0.152 (instead
of q2 = 0.09 = 0.32). This
lower q2 value attributes more
variance to the trial-by-trial
noise and therefore produces
smaller reanalyzed sensitivity in
the search task (indirect task).
Results under this plausible
assumption produces less
evidence for ITAs
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Fig. 10 ITA Reanalysis Results.
Similar to Fig. 4 but with
q2 = 0.25 = 0.52 (instead of
q2 = 0.09 = 0.32). The larger
q2 value attributes less variance
to the trial-by-trial noise and
therefore produces larger
reanalyzed sensitivity in the
search task (indirect task).
Results under this extreme
assumption produce numerical
results that point more towards
ITAs. But since more variance is
attributed to between-subject
differences this way, standard
errors are also larger
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Appendix B

The flaw of the standard reasoning in frequentist
and bayesian statistics

In themain text, we cautiously did not frame the fallacy of the
standard reasoning in terms of null hypothesis significance
testing. We did this because the fallacy is independent of
the statistical framework—be it Frequentist or Bayesian—
used to determine a clear effect in the search task and a low
sensitivity in the explicit recognition task.

Previous studies have often fallen for the fallacy of the
standard reasoning using Frequentist null hypothesis testing.
They inferred a difference between the two tasks from a sig-
nificant result in one task and a non-significant result in the

other task. Intuitively, it is appealing to take a significant RT
effect in the search task and a sensitivity not significantly
above chance in the explicit recognition task as evidence
for a difference. But this is a well-known misinterpretation
of significance tests (Cantor, 1956; Appendix B in Franz &
Gegenfurtner, 2008; Nieuwenhuis et al., 2011; Smith, 2020).
Interpreting a non-significant result in the explicit recogni-
tion task is especially problematic because this task is often
heavily underpowered due to fewer trials than the search
task (Schlagbauer et al., 2012; Vadillo et al., 2016). Then,
it should come as no surprise that—even with the same sen-
sitivity underlying both tasks—the explicit recognition task
fails to reach significance. The statistical power is just not
high enough to reliably detect above-zero sensitivity. When
sufficient statistical power is employed, studies do find non-
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negligible explicit recognition sensitivity (e.g., Colagiuri &
Livesey, 2016; Zhao & Ren, 2020; Vadillo et al., 2016).

However, the problem is deeper rooted than in a misinter-
pretation of null results in Frequentist statistics. Bayes factors
(Morey & Rouder, 2011; Rouder et al., 2009; Schönbrodt &
Wagenmakers, 2018) suffer an analoguous problem (Palfi &
Dienes, 2020): One Bayes factor supporting the alternative
hypothesis in the search task and another Bayes factor sup-
porting the null hypothesis in the explicit recognition task
is not good enough evidence for an underlying difference
between these two tasks.

This is especially true when taking into account that mea-
sures in the two tasks are on different scales—continuous
RTs in the search task and binary predictions in the explicit
recognition task. An ideal observer that had access to the con-
tinuous RTs (analogous to the baby weights in our example),
would have to dichotomize these responses when employing
this information to give a response in the explicit recognition
task (Berry et al., 2006). Thus, even if participants had some
underlying continuous sense of how sure they are in recog-
nizing repeated vs. new configurations, the binary response
format forces them to discard this information. This entails a
loss of test power in Frequentist statistics (Cohen, 1983) but
also a systematic decrease of Bayes factors.

Additionally, there is another known problem of Bayes
factorswhen it comes to small effect sizes. The issue is known
as the catch-up phenomenon (Erven et al., 2012; Tendeiro &
Kiers, 2019). For fixed, small effects (weak sensitivities),
Bayes factors support the null hypothesis in small samples.
But for sufficiently large samples, the same small effect
results in Bayes factors supporting the alternative hypoth-
esis. This creates a serious problem when different number
of trials are used: The same underlying information will be
evaluated differently, as support for the null hypothesis in one
task with few observations and as support for the alternative
hypothesis in another task with many observations (Fig. 8 in
Tendeiro & Kiers, 2019).

A short simulation reveals these problems: We simulate
N = 15 participants each with a true sensitivity of d ′

i
drawn from a normal distribution with mean 0.25 and stan-
dard deviation 0.3 (this corresponds to our assumption on
q2 = 0.32 = 0.09, see above). Each participant performs
K = 96 trials split evenly into the two conditions, repeated
vs. new. Responses in these trials are sampled from normal
distributions with expected value 0 for repeated and d ′

i for
new conditions. Standard deviations of these two normal dis-
tributions are set to 1. For the search task, we compute the
mean difference in responses from each participant based on
all K = Ksearch = 96 trials. For the explicit recognition
task, we only take the first 12 trials per condition for a total
of Kexplicit = 24 trials, which is a common number of trials
for the explicit recognition task. We measure the sensitiv-

ity by computing hit and false alarm rates using the optimal
decision criterion (median split) at d ′

i/2.
Based on the individual differences and sensitivities, we

used default Bayes factor analysis to evaluate the results (the
ttestBF() function with default parameters from the R
package BayesFactor, Morey et al., 2015). Across 1000 sim-
ulations, the Bayes factors of the search task were larger
than in the explicit recognition task: The median Bayes fac-
tors were in the search task BF10 = 3.9 vs. in the direct task
BF01 = 0.9. Thus, even an ideal observer with the exact
same underlying information in the two tasks would be eval-
uated differently by Bayesian statistics due to the different
scale and number of trials. These effects are exacerbated for
smaller sensitivities.

A separate simulation in which the number of trials was
held constant, Ksearch = Kexplicit = 96, revealed that the
dichotomization necessary for the binary response format
still reduces BFs. Median Bayes factors in this case are
BF10 = 3.9 in the search task (same as before) vs. BF10 =
2.6 in the explicit recognition task: The binary response
format in the explicit recognition task discards information
much like a dichotomization does when researchers apply it
to their data (Cohen, 1983; MacCallum et al., 2002). Only
here, the dichotomization is hidden in the response format
and done by the participant internally. Nevertheless, this cre-
ates a difference in evaluating the two tasks no matter which
statistical framework is used.

Thus, Bayes factors also evaluate the two tasks differently
even though, by design of our simulation, we used the exact
same information underlying responses in both tasks. The
solution to this problem is straightforward: A comparative
question, such as the question whether an ITA exists, must
be answered not by statistics computed for the two tasks
separately but by testing for a difference—by conducting a
sensitivity comparison.
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