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The brain builds and maintains internal models and uses them to make predictions. When
predictions are violated, the current model can either be updated or replaced by a new
model. The latter is accompanied by pupil dilation responses (PDRs) related to locus
coeruleus activity/norepinephrine release (LC-NE). Following earlier research, we investi-
gated PDRs associated with transitions between regular and random patterns of tones in
auditory sequences. We presented these sequences to participants and instructed them to
find gaps (to maintain attention). Transitions from regular to random patterns induced
PDRs, suggesting that an internal model attuned to the regular pattern is reset. Transitions
from one regular pattern to another regular pattern also induced PDRs, suggesting that
they also led to a model reset. In contrast, transitions from random patterns to regular
patterns did not induce PDRs, suggesting a gradual update of model parameters. We
modelled these findings, using pupil response functions to show how ongoing PDRs and
pupil event rates were sensitive to the trial-by-trial changes in the information content of
the auditory sequences. Expanding on previous research, we suggest that PDRs—as bio-

system markers for LC-NE activation—may indicate the extent of prediction violations.
© 2024 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC
BY license (http://creativecommons.org/licenses/by/4.0/).
. Sherman, Graves, & Turk-Browne, 2020; Zhao et al., 2019) to
1. Introduction

improve their performance in perceptual and cognitive tasks
(Bestmann et al., 2008; Krishnamurthy et al., 2017). However,

The sensory input from natural environments exhibits sta-
tistical regularities over multiple temporal and spatial scales.
A wide range of studies has observed that humans are sensi-
tive to these statistical regularities and track them (Barascud
et al., 2016; Canale, 2022; Frost et al., 2019; Paavilainen, 2013;

statistical regularities in the environment are constantly
violated, and new regularities emerge.

Zhao et al. (2019) observed that the violation of such sta-
tistical regularities (i.e., deviations from regular patterns) but
not their emergence from random patterns led to sharp
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increases in pupil size (i.e., pupil dilation responses, PDRs in
short). Based on earlier studies (Joshi et al., 2016; Reimer et al.,
2016), Zhao et al. (2019) interpreted these PDRs as reflecting
the activity of the locus coeruleus-norepinephrine (LC-NE)
system, a vital part of the arousal system in the brain. The
results were taken as suggesting that an internal model,
reflecting a regular pattern, resets upon encountering a
random pattern. Conversely, the internal model for a random
pattern is not reset upon the onset of regularity, but instead
undergoes a gradual update in its parameters, as the violation
of randomness is statistically harder to determine. Hence,
Zhao et al. (2019) suggested that the reset, but not the update,
of internal models leads to PDRs.

Despite consistent observations, the influence of the
violation and emergence of regular patterns on pupil re-
sponses (either constriction or dilation) has yet to be fully
investigated. In this study, we first replicated and generalized
the findings of Zhao et al. (2019), and then went on to quantify
the relationship between the information content of the sta-
tistical patterns and the associated pupil responses. In the
following sections, we will first highlight the empirical and
theoretical background of this research and then describe our
study in detail.

1.1. Expected and unexpected uncertainties

Internal models of statistical relationships in the environment
are affected by changes that generate uncertainty by violating
predictions (Dayan & Yu, 2003, 2006; Gershman & Niv, 2010;
Wilson et al.,, 2013; Yu & Dayan, 2005). Two types of un-
certainties can be defined: expected and unexpected un-
certainties. Expected uncertainties arise because of modelled
unreliability of predictive relationships and mirror the
inherent stochasticity of the environment. When these un-
certainties are epistemic rather than aleatoric,’ they can lead
to model update which is accompanied by a decrease in the
expected uncertainty. Conversely, unexpected uncertainties
invalidate models, requiring them to be replaced (Dayan & Yu,
2003, 2006; Nassar et al., 2012; Payzan-LeNestour et al., 2013;
Yu & Dayan, 2005; Zhao et al., 2019), thus leading to model
reset. Expected and unexpected uncertainties suppress top-
down expectations and increase the importance of newly
acquired information (Dayan & Yu, 2003, 2006; Farashahiet al.,
2017; Soltani & Izquierdo, 2019).

Although uncertainties are subjective (Yu, 2012), they can
be approximated from the perspective of an ideal observer
model that learns optimal predictive relationships between
events (Barascud et al., 2016; Pearce, 2005). The strength of
these predictive relationships can be quantified by estimating
the negative probability of events based on the history of the
observer (MacKay, 2003). This measure is often referred to as
information content, self-information or surprise. We now
discuss how this measure illuminates the different types of
uncertainties that we encounter.

1 Epistemic uncertainties stem from the incomplete knowledge
of an observer and can be reduced by new information. By
contrast, aleatoric uncertainties arise from irreducible stochas-
ticity, for example, the outcome of a fair coin toss (Hiillermeier &
Waegeman, 2021).

The dynamics of the information content varies with the
different types of uncertainty. Known deterministic environ-
ments in which a single input sequence repeats are perfectly
predictable, and so have zero information content. Thus, any
change in these types of environments is a form of unex-
pected uncertainty, which is associated with an information
content increase that is immediately apparent when pre-
dictions are violated. Such a change results in a reset of the
model that is built for the sequence. If the result of the change
is a different deterministic environment, the information
content will then gradually decrease to zero as the perfect
predictability becomes apparent.

Uniformly random environments, on the other hand, have
maximal information content and full expected uncertainty,
since they are completely unpredictable. When they change,
for instance by becoming deterministic, the information
content can only decrease. However, this change is difficult to
pinpoint, because a repeating deterministic sequence is a
possible, if increasingly unlikely, draw from the stochastic
environment. Thus, there is no abrupt model reset, and only
progressive model update. We will revisit this topic later when
we examine the relationship between information content
and PDRs.

1.2.  Uncertainties, the LC-NE system, and PDRs

It has been suggested that the difference between expected
and unexpected uncertainty is putatively accompanied by
differences in the release of neuromodulators, as un-
certainties signal when computation and plasticity are
required. Thus, environmental changes can drive the brain’s
arousal systems. Expected uncertainty has been related to the
neuromodulator acetylcholine (ACh) and unexpected uncer-
tainty with norepinephrine (NE; Dayan & Yu, 2003; Bouret &
Sara, 2005; Marshall et al., 2016; Nassar et al., 2012; Yu &
Dayan, 2005).

In keeping with this suggestion, one role for the LC-NE
system is regulating arousal via widespread NE release
(Aston-Jones & Cohen, 2005; Carter et al., 2010; Joshi & Gold,
2020; Nassar et al., 2012; Sara & Bouret, 2012). Indeed, NE has
been suggested as the medium by which unexpected un-
certainties lead to a global reset signal across the brain (Bouret
& Sara, 2005; Dayan & Yu, 2006; Yu & Dayan, 2005; Zhao et al.,
2019); this then disrupts top-down cognitive processes and
prioritizes the accumulation of bottom-up sensory informa-
tion, thereby accelerating the discovery and establishment of
models of new structure in the environment.

Neurological studies of animal models suggest that PDRs
correlate with the LC-NE system’s phasic activity (Strauch
et al., 2022). For example, Reimer et al. (2016) found that
phasic activity in NE was associated with PDRs in mice and
Joshi et al. (2016) observed that the activation of the LC-NE
system preceded an increase in pupil size. Further research
based on fMRI (functional magnetic resonance imaging) sug-
gested that pupil size was positively correlated with BOLD
activity in the LC in humans (de Gee et al., 2017; Murphy et al.,
2014). Therefore, from this perspective, PDRs can be consid-
ered a biomarker of the LC-NE system activity. The relation-
ship of PDRs with arousal and learning rate further
strengthens this idea (Nassar et al., 2012).
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1.3. Information content and PDRs

In line with the suggested role of PDRs as a biomarker of the
LC-NE activation, a wide range of studies has shown that PDRs
were evoked in response to events with high information
content (unexpected, surprising events; Alamia et al., 2019;
Krishnamurthy et al.,, 2017; Payzan-LeNestour et al., 2013;
Nassar et al., 2012; Preuschoff et al., 2011; Filipowicz, Glaze,
Kable, & Gold, 2020; Zénon, 2019; Zhao et al., 2019). Most of
these studies used tasks that required explicit tracking of the
environmental statistics (Krishnamurthy et al., 2017; Nassar
et al,, 2012; Preuschoff et al., 2011; Filipowicz, Glaze, Kable, &
Gold, 2020). Recent studies also explored PDRs in scenarios
where no explicit tracking of the environmental statistics was
required, thereby testing whether such PDRs can also be
evoked spontaneously in response to events with high infor-
mation content (Alamia et al., 2019; Bianco et al., 2020; Milne
et al,, 2021; Zhao et al., 2019). For example, these studies
instructed participants to perform irrelevant, decoy tasks of
passively listening to auditory sequences (Bianco et al., 2020),
or to detect a target that was irrelevant to the statistical
structure (Alamia et al., 2019; Milne et al.,, 2021; Zhao et al.,
2019). Thanks to these efforts, a positive link between infor-
mation content and spontaneous PDRs has been established.

However, several aspects of this link are still unclear. First,
it is not fully understood how variations in information con-
tent—be they decreases or increases—affect the full-time
course of PDRs. Indeed, recent studies suggest that it might
be beneficial to investigate the full time-series of PDRs instead
of focusing only on scalar values (like mean or maximum
pupil size; Denison et al., 2020; Hershman et al., 2023; Fink
et al., 2024). Such an approach would make it possible to
determine the temporal characterizations of effects and
outline temporal dynamics of cognitive and perceptual pro-
cessing (Hershman et al., 2023) and thereby clarify the rela-
tionship between pupil dynamics and information
content—for instance, the speed with which the pupil re-
sponds (Cai et al., 2023; de Gee et al., 2014; Denison et al., 2020;
Hoeks & Levelt, 1993; Wierda et al., 2012). We also do not know
whether performance on an irrelevant task influences the link
between information content and PDRs, and if so with what
effect.

1.4. Purpose of the present study

We measured PDRs in response to the violation and emer-
gence of regular patterns in fast-paced auditory sequences
(Zhao et al., 2019). Because we were interested in the
spontaneous processing of statistical regularities, no task
was associated with transitions between patterns. Instead,
participants were instructed to perform the apparently
irrelevant task of finding gaps in those patterns, just to
ensure they maintained their attention on the auditory
sequences.

Zhao et al. (2019) investigated transitions between regular
and random patterns. We included a new condition with
transitions from one regular pattern to another regular
pattern. This new condition allowed us to verify that the
resulting PDRs are not only due to the saliency of a new
random pattern after a regular pattern per se, but instead are

due to the violation of regularities. Both conditions have been
shown to evoke a mismatch-negativity (MMN) in electroen-
cephalography (EEG; Southwell, 2019), suggesting that the
brain treats these transitions as unexpected events.

We also estimated the information content resulting from
the violation and emergence of regularities. We did this using
a variable-order Markov model called Information Dynamics
of Music (IDYOM, Pearce, 2005; 2018). Violation and emergence
of regularities (including our new regular—regular condition)
led to different degrees of information content, suggesting
different requirements for the computations that must be
carried out in the brain to build models and make predictions
(Dayan & Yu, 2003; Milne et al., 2021; Yu & Dayan, 2005; Zhao
et al., 2019). Having observed that PDRs fluctuate over time
with changes in information content, we modelled their re-
lationships on a trial-by-trial basis using a convolutional
approach based on pupil response functions (PRFs; Cai et al.,
2023; de Gee et al., 2014; Denison et al., 2020; Hoeks & Levelt,
1993; Wierda et al., 2012).

Finally, although previous results showed that the PDRs
arise spontaneously (Zhao et al., 2019), they did not quantify
the effect of the irrelevant task on the link between informa-
tion content and PDRs. We therefore assessed the extent to
which pupil responses are spontaneous biomarkers of

changes in predictive relationships in environmental
statistics.
2. Material and methods

We report how we determined our sample size, all data ex-
clusions, all inclusion/exclusion criteria, whether inclusion/
exclusion criteria were established prior to data analysis, all
manipulations, and all measures in the study. The experiment
and associated PDRs analysis for the replication were pre-
registered at AsPredicted (https://aspredicted.org/GSK_NH]J).
Analyses linking information content and PDRs were not
preregistered but were included at the suggestion of re-
viewers. The raw data, processed data, and analysis scripts
were shared as an Open Science Framework project (https://
osf.io/KPW57).

2.1. Participants

Twenty-nine participants attended the study. As a result of
the exclusion criteria based on the gap detection task specified
in the preregistration, no data was collected for three partic-
ipants whose accuracies after practice remained below 80%.
However, due to the poor general performance of participants
in finding gaps, we later deviated from the preregistration,
letting all participants attend the main experiment and
excluding outliers before the main analysis. Four participants
with hit rates three standard deviations below or false alarm
rates three standard deviations above the group mean were
excluded, resulting in 22 participants (8 female, Mage: 24.43,
SDage: 3.28). Including the four excluded participants in the
analysis did not change our results.

Zhao et al. (2019) reported Cohen’s d, of .8 in a within-
subjects design with a one-sided t-test for the effect on PDRs
and determined that N = 12 yields adequate power (1—g = .8)
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at a = .05. With the same effect size, we found that N = 20
increases the power to .964 (The current power of the study
with N = 22 is 1- 8 = .976).

The participants were mostly university students and
compensated with either course credit or 10 EUR per hour. The
ethics committee of the Eberhard Karls University of Tiibingen
approved the study (Date of approval: 17.06.2020).

2.2. Materials

We used the same auditory stimuli as Zhao et al. (2019). Fig. 1
shows an example set of stimuli used in the experiment. All
auditory stimuli were generated by concatenating 50 msec
tones of various frequencies selected from a frequency pool
consisting of 20 log-spaced values between 222 and 2000 Hz
(namely, 222, 250, 280, 315, 354, 397, 445, 500, 561, 630, 707, 793,
890, 1000, 1122, 1259, 1414, 1587, 1781, 2000 Hz).

Ten tones selected from the frequency pool (with replace-
ment) were used to create regularities (REG10). Similarly, ten
tones selected from the frequency pool (with replacement)
were shuffled to generate random patterns (RAND10). These

Frequencies [Hz]

2000 3000 4000
Time [ms]

Fig. 1— Example stimuli. Note. Typical stimulus sequences
used in the experiment. Each yellow bar represents a tone
(each lasting 50 msec). RAND10: 10 tones were randomly
selected from a pool of 20 tones and presented in a random
order. REG10: 10 tones were randomly selected from the
same pool and then these 10 tones were presented
repeatedly in the same order. These conditions served as
control conditions as they did not include a statistical
change. RAND10-REG10: First the RAND10 pattern was
presented, then there was a transition to a REG10 pattern.
REG10-RAND10: Transition from REG10 to RAND10.
REG10a-REG10b: Transition from one REG10 pattern to
another REG10 pattern. Transitions between patterns are
marked by a white vertical line (transition times were
jittered in the experiment but are shown here as
overlapping, for simplicity).

conditions, which did not involve a change in statistical
structure, served as control conditions.

For trials involving a transition, ten tones were selected
from the frequency pool for the first pattern, and the same
tones were used to generate the second pattern to avoid
introducing novel tones after the transition. There were three
types of trials with transitions: (a) RAND10-REG10 involved a
transition from RAND10 to REG10 and was used to investigate
the effect of the emergence of regularity. As discussed earlier,
this type of transition allows gradual model update and, in
this case, a reduction of information content. (b) REG10-
RAND10 involved a transition from REG10 to RAND10 and
was used to investigate the effect of the violation of regularity.
(c) REG10a-REG10b involved a transition from one REG10
pattern to another REG10 pattern and thereby also constituted
a violation of regularity, and an increase, and then a decrease
in information content. If PDRs are sensitive to unexpected
uncertainties and are evoked due to model reset, transitions
in (b) and (c) should elicit PDRs but not in (a).

Each participant observed 192 randomly generated trials
corresponding to 48 RAND10, 48 REG10, 48 RAND10-REG10, 24
REG10-RANDI10, and 24 REG10a-REG10D trials. The length of
the auditory sequences varied randomly between 6 and 8 sec,
at a granularity of 500 msec. Transitions occurred between 3
and 4 sec after the sequence onset. Specifically, REG10s con-
sisted of 12—16 repetitions of the same auditory sequence
(120—160 tones in total), and REG10s in REG10-RAND10 and
REG10a-REG10b were violated after 6—8 repetitions (60—80
tones in total) presented. Inter-trial intervals (ITIs) were 5 sec.

A gap detection task was provided to keep participants'
attention and lead them to engage with the auditory stimuli
(Milne et al., 2021; Zhao et al., 2019). The gap detection task
was irrelevant to the transitions. It required participants to
detect possible gaps that could occur in 20% of trials and at
any time between 250 msec post-onset and 750 msec pre-
offset. Each condition involved the same number of gaps,
but their durations were determined to be three missing tones
(150 msec) for RAND and two missing tones (100 msec) for REG
to equate the difficulty of the gap detection task (in line with
Zhao et al., 2019). Trials involving a gap or receiving a false
alarm response were removed from the analysis to avoid any
effect of the gap or the motor response.

The auditory stimuli were presented by a headphone
(Beyerdynamic DT-770 M 80 Ohm) connected to the monitor
(ViewPixx/3D System, screen diagonal: 24-inch/60.96 cm).
Participants were provided with a RESPONSEPixx connected to
the monitor and could respond with any of the five buttons
(according to their preference). The participants' right eyes
were tracked using an EyeLink 1000 system (SR Research) at a
1000 Hz sampling rate.

2.3. Procedure

Participants satin aluminance-controlled, dimly litroom (5 cd/
m?) to ensure that non-luminance-evoked pupil dilation could
be observed. They were instructed to place their chin on a
chinrest 50 cm away from the monitor to maintain a fixed
distance between the eye and the monitor. They were asked to
fixate on a white cross (13.2 cd/m?) in the centre of a grey
background, which remained constant throughout the
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experiment. The eye tracker was positioned below the monitor
and continuously tracked the gaze position and the right eye.

Sounds were presented diotically at a comfortable intensity
level the participants selected before the experiment. Partici-
pants were shown several examples of auditory sequences,
including a gap, and a short practice session was carried out.
They were instructed to monitor the sequences for gaps and
respond by pressingabutton. The end of trials was indicated by
a fixation cross changing to green for 400 msec. The main
experiment involved four blocks, each taking approximately
9 min with 3-min optional breaks. Participants observed trials
coming from different conditions within the same block. A
calibration phase was applied before each block to calibrate the
gaze locations detected by the eye tracker.

2.4.  Analysis

Our preprocessing pipeline closely paralleled that of Zhao
et al. (2019) but was implemented using different program-
ming languages and software packages. We note minor de-
viations throughout the analyses section.

2.4.1. Analysis of gap detection performances

Participants' performance in the gap detection task was
transformed into hit and false alarm rates. Hit and false alarm
rates were then arcsine transformed for the subsequent
parametric and Bayesian statistical analyses.

2.4.2. Analysis of pupil size values
The area of the pupil of the right eye was measured during the
experiment, and the data were converted to diameter for
further analysis (pupil area led to the same results). The pupil
size data were analysed at 1000 Hz.

Participants' gaze directions were analysed to avoid any
effect of gaze on pupil size by checking deviations of more
than three standard deviations from the group mean. By this
criterion, we found that none of the participants' mean gaze
locations exceeded the group mean more than this amount.

As noted, trials involving a gap or receiving a false alarm
response were removed from the analysis to avoid any effect
of the gap or the motor response. The pupil sizes measured for
RAND10-REG10, REG10-RAND10, and REG10a-REG10b condi-
tions were separated into epochs according to the transition
time; namely, the data were segmented by considering 1 sec
before and 3 sec after transitions to investigate their effects.
For the control conditions REG10 and RAND10, which lack a
transition, dummy transition times were randomly selected
between 3 and 4 sec. The segmented data were analysed to
investigate the effect of transitions on PDRs. Considering that
the first ten tones in REG10 were indistinguishable from
random sequences of tones, transitions from RAND10 to
REG10 were shifted one repetition (10 tones, 500 msec).

Complete or partial blinks in the segmented pupil size data
were reconstructed by piecewise cubic interpolation. Trials
having 50% missing data because of blinking or involving
missing data after interpolation were removed from the ana-
lyses (=1.15% of all trials). After blink construction, the data
were smoothed with a 150 msec Hanning window.

To be able to compare the conditions, the data were z-
scored by computing each participant’s mean and standard

deviation for each block separately across all conditions. To
assess the effect of transitions on pupil size, baselines were
determined for each trial as the mean of a 1-sec interval before
the transitions.

Following the preregistration associated with the replica-
tion of Zhao et al. (2019), we calculated separate linear re-
gressions for each participant, condition, and timepoint (each
timepoint represents 1 msec) to predict pupil size from base-
line, with the residuals from these regressions being used for
estimating the effect of transitions. This method replicated
the target study closely (Figure S2); however, it brought minor
timing and magnitude differences between REG10-RAND10
and REG10a-REG10b in response to transitions (see Figure S3
for a comparison). Upon observing that subtracting baselines
led to more consistent results, we used this method in our
analyses.

We conducted a series of two-tailed t-tests to compare
transition and control (no transition) conditions after down-
sampling the data to 20 Hz. Bayes factors (BF;o) were calcu-
lated from t values with Jeffreys, Zellner, and Siow (JZS) priors
using the Pingouin package in Python (Vallat, 2018). Unless
stated otherwise, the transformation was conducted with a
Cauchy scale factor of .707. As a complementary frequentist
analysis, we detected significant clusters (p < .05) by a non-
parametric cluster-based permutation procedure (5000 itera-
tions with a threshold of p < .05) using the MNE package in
Python (Gramfort et al., 2013; Larson et al., 2023; Maris &
Oostenveld, 2007). To counteract the multiple comparison
problem, we also utilized orthogonal Chebyshev polynomials
(the first kind) to model the time course of PDRs (Section S7).
Orthogonal polynomials have previously been used in pupill-
ometry research to investigate differences in linear and non-
linear trends in pupil size data (Geller et al., 2019; Kuchinsky
et al., 2013).

All these statistical analyses revealed consistent results.
For simplicity, we therefore show only BF,, in the figures (as
coloured horizontal lines). The other statistical tests based
on the non-parametric cluster-based permutation procedure
and orthogonal polynomials can be found in Figures S3 and
S7.

To estimate the possible baseline differences between
regular and random patterns (i.e., REG10 versus RAND10),
RAND10 and REG10 conditions were segmented by consid-
ering 1 sec before and 6 sec after sound onset. Then, similar
analysis steps as above were applied to REG10 and RAND10
separately. For correction of these signals, the mean of the 1-
sec interval before the sound onset was computed and sub-
tracted from each trial to investigate the effect of patterns.

Finally, as an exploratory analysis, we asked for individual
participants whether violations of regularities and whether
performance in the gap-detection task were associated with
any change in baseline and mean pupil responses. Baseline
pupil responses were determined for each trial as the mean of a
1-sec interval before transitions. We then determined mean
pupil responses for each trial by averaging the changes in
baseline corrected pupil diameter during the .6 sec—3 sec in-
terval following a transition, a time frame where mean PDRs
were visible and BFq > 1 for both REG10-RAND10 and REG10a-
REG10b. We further investigated their relationships with per-
formance variables (RTs and d’ of the gap detection task) to
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assess the impact of the irrelevant task performance on pupil
responses.

2.4.3. Pupil event rate analysis

To determine the effect of transitions on pupil responses, as
an exploratory analysis, we used a method proposed by Joshi
etal. (2016) and applied by Zhao et al. (2019). This method finds
pupil events by focusing on either positive (i.e., pupil dilation)
or negative (i.e., pupil constriction) changes in pupil size in-
dependent of the magnitude. Unlike averaging, which em-
phasises macro-events and slowly varying pupil responses,
this method detects micro-events such as micro-dilations and
micro-constrictions.

The slope of the change on each trial was computed by a
set of linear regression algorithms trained sequentially on a
150 msec window to recover the pupil’s behaviour at specific
time points, using time as a predictor of pupil size. The loca-
tions of micro-dilations were defined as local maxima;
conversely, those of micro-constrictions were defined as local
minima between two selected sequential zero-crossings.

Sequential zero-crossings were selected based on
exceeding two different thresholds on their separation in time
(Joshietal.,, 2016). Events were determined according to 75 and
300 msec thresholds for each trial in the average PDRs analysis
(see Fig. 2), and event rates were computed using a 500 msec
sliding window for each participant for each condition (based
on the mean of participants). Finally, we performed the same
statistical procedure we employed for comparing PDRs to
compare event rates across conditions.

2.4.4. Information content analysis

The IDYOM model (Pearce, 2005, 2018) was used to evaluate
changes in information content (to estimate model update
and reset). This fits a variable-order Markov chain with mul-
tiple viewpoints (i.e., features). Based on previous observa-
tions, it calculates information-theoretic values for each tone
within a sequence (e.g., information content and entropy).
This model was used in previous research to estimate

A 75 ms threshold
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Fig. 2— Micro-dilations and constrictions. Note. A sample
trial that involves micro-dilations and constrictions
detected by the algorithm. (A) Events determined according
to a 75 msec threshold and (B) 300 msec threshold. The red
line represents dilations, and the red dot shows where
dilation events are temporally located, whereas the blue
line and dot represent constriction events.

information-theoretic values within auditory sequences
(Barascud et al., 2016; Bianco et al., 2020; Milne et al., 2021;
Zhao et al.,, 2019).

We applied this model to the auditory sequences that were
presented to participants during the experiment. Since we
were interested in statistical relationships between tones, we
used “pitch” as a viewpoint (“cpitch” in the IDYOM model
terminology). To capture the long-term effects of the entire
experimental session and short-term effects of statistical
structure (mimicking perception and learning), we used the
combination of short (STM) and long-term memory (LTM).
This parameter corresponds to “both” in the IDYOM model
terminology.

After receiving information content values from the
IDYOM model for each trial, we subtracted the information
content of the previous point from the corresponding current
point; thereby calculating the change in information content.
We assumed that the information content in ITIs was 0, as no
stimuli were displayed in these ranges except for a constant
fixation cross. We down-sampled PDRs to 20 Hz, correspond-
ing to the sampling rate of information content.

We developed two pupil models using information content
changes: the pupil size and the pupil event model. The pupil
size model predicts the magnitude of pupil responses within
trials from information content changes. In this way, it ap-
proximates continuous pupil behaviour. By contrast, the pupil
event model models micro-dilation and micro-constriction
rates (see 2.4.3 Pupil Event Rate Analysis) using the accom-
panying information content changes whilst ignoring slow
pupil responses. These two models complement each other,
since the number of pupil events, rather than the magnitude
of PDRs, might be associated with changes in information
content if, for example, the number, but not the size, of micro-
dilations was affected.

We focused our modelling on the transitions between
patterns (i.e., REG10a-REG10b, REG10-RAND10, RAND10-
REG10) since these are expected to offer the strongest ef-
fects. Furthermore, the violation of regularities (REG10a-
REG10b and REG10-RAND10) and the emergence of regularities
(RAND10-REG10) occurred on similar numbers of trials in the
dataset. The models were required to fit pupil size and micro-
event rates for the entire auditory sequence across whole
trials. We describe the size and event models in turn.

Pupil size model. The pupil response to a particular event
can be modelled by a convolutional approach based on a
linear model (Cai et al., 2023; de Gee et al., 2014; Denison et al.,
2020; Hoeks & Levelt, 1993; Wierda et al., 2012). Following this
approach, we treat information content change as an internal
event that changes the pupil response in a way that is
described by a pupil response function (PRF). The predicted
overall dynamics of the pupil then arise from a convolution of
the information content change signal and the PRF.

This approach makes several assumptions as to how the
pupil responds to events. In the context of our model, these
include that the same information content change leads to the
same PDRs, the relationship between information content
change and PDRs does not vary over time, and, in the simplest
case, the information content change is linearly related to
PDRs. These properties have been shown to capture pupil re-
sponses to isolated events such as simple visual and auditory


https://doi.org/10.1016/j.cortex.2024.10.023
https://doi.org/10.1016/j.cortex.2024.10.023

72

CORTEX 183 (2025) 66—86

stimuli (Hoeks & Levelt, 1993) and have been utilized to model
PDRs in previous studies to investigate attention and decision-
making (Cai et al., 2023; de Gee et al., 2014; Hoeks & Levelt,
1993; Wierda et al.,, 2012) even when relevant events are
close in time (Denison et al., 2020).

The PRF has been specified in the literature (Hoeks & Levelt,
1993) as

h(t) — the"t/tmax

(1)

In this equation, h is the pupil size, t is the time in sec, tmax
(also in sec) determines the peak time of the PRF, and n con-
trols the width of the PRF (see Fig. 3). Hoeks and Levelt (1993)
specified parameters of this PRF (n = 10.1 and tmax = .93 sec)
and pointed out that n is quite variable between participants
(n =10.1 + 4.1 0). We will call this the literature-based PRF.

We fitted the actual pupil responses recorded in the
experiment with a linear model (in our case, a linear-mixed
model for each participant) based on the convolved signal.
We discuss the independent variables in the model and the
fitting procedure in detail in the following sections.

Pupil size model types. We built five models with varying
complexities which make different assumptions as to how
information content changes determine PDRs.

(a) The first model converts information content changes
to pupil responses using convolution with the literature-based
PRF (IClit in short). (b) The second model is an extension of the
first model that converts information content changes to pupil
responses by a unique PRF for each participant (ICfit in short).
These PRFs used the same functional form as in Equation (1),
but with individual values for n and tmax which were found by
an optimization procedure.

Models (a) and (b) specify identical sensitivities of pupil
responses to positive and negative information content
changes. The remaining models allow these to differ based on
separating information content changes into positive and
negative channels, symbolised as IC+. (c) The third model
convolves these channels with the literature-based PRF
(IC + lit in short). (d) The fourth model convolves these
channels by a unique PRF for each participant (IC + fit in
short). (e) The fifth, and the most complex model, allows these
channels to have different PRFs (IC + fit+ in short).

By comparing these models, we estimated any differential
effects of positive and negative information content changes
(IC versus IC+) on PDRs, individual variabilities within PRFs
(IC + lit versus IC + fit), and possible differences between PRFs
across channels (IC + fit versus IC + fit+).

The IDYOM model estimates information content within
sound sequences. However, it may not accurately capture the
predictability of trial onset, as it does not account for partici-
pants' predictions during the ITI. To address this, we added a
parameter to the models specified so far to estimate the effect
of trial onset (called ICgtart). We assume that the trial onset is
always surprising (i.e., presents only positive information
content) and has an effect that can be captured by the same
PRF used for information contents of sound sequences. We
appended an asterisk (*) to indicate the involvement of this
parameter; for example, IClit* corresponds to the model that
estimates the effect of the trial onset with this additional
parameter and then convolves the information content
changes with a literature-based PRF.

Pupil size model fitting. We used the function in Equation (1)
for all PRFs. We used literature-based values for (n = 10.1 and
tmax = .93 sec) for IClit and IC + lit. For the other models, we
used a Bayesian optimization procedure (using scikit-
optimize in Python; Section S10) to fit values for individual
subjects. We conducted a search between 1, 20 for n,
.2 sec—2 sec for tmax, and from 0 to 20 bits for ICgtart

By convolving information content changes with the
resulting basis PRFs, we computed predictive signals. Then we
mapped these predictive signals to actual pupil responses
using a linear-mixed model (using the statsmodels package in
Python; Seabold & Perktold, 2010) to find the best fitting pa-
rameters for each participant by determining the maximum of
average R? across trials.

IClit and ICfit (and the variants with an *) models assume
that positive and negative information content changes affect
pupil responses to the same degree (but in opposite directions,
given positive sensitivity, the convolution of a positive signal
with a basis PRF results in positive values, i.e., pupil dilations,
whereas for a negative signal, the result is negative values, i.e.,
pupil constrictions). They include one predictive signal for
information content changes that is convolved with a basis
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Fig. 3— Pupil Response Function Examples. Note. An example set of PRFs (Pupil Response Functions). (A) PRFs with n = 10.1
for different peak responses (tmax). (B) PRFs with the parameter t,,.x = .93 sec for different n values.
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PRF (symbolised as IC) with a random effect across trials. The
linear-mixed model used for them had the following form (in
Wilkinson notation; Wilkinson & Rogers, 1973):

PupilSize = IC + PupilBaseline + PupilDrift + BlockOrder
+(1 4 IC|Trials)

(2)

We included PupilBaseline, the mean pupil size of a 1-sec
interval before the auditory onset, as a predictor to investi-
gate its effect on pupil responses. Additionally, we included
time in a trial to estimate spontaneous negative or positive
linear changes in pupil behaviour within a trial; this regressor
is called PupilDrift. We also included the order of experimental
blocks (i.e., BlockOrder) to assess the potential impact of time
throughout the experiment.

IC =+ lit, IC + fit, and IC + fit+ (and the variants with an *)
allow positive and negative information content changes to
affect pupil responses to different degrees. They include a
predictive signal for each channel estimated by a convolution
operation with a basis PRF (symbolised as IC+ and IC-) with a
random effect across trials. The model used for them had the
following form (+ within terms are given as a subscript in the
formula for visual clarity):

PupilSize = IC, + IC_ + PupilBaseline + PupilDrift
+BlockOrder + (1 +IC, + IC_|Trials)

(3)

Models predicted the shape and magnitude of baseline
corrected PDRs across entire trials (i.e., both before and
after the transition) based on information content
changes. We then segmented and corrected the model
predictions to visualise sustained and transition-evoked
PDRs (like actual PDRs, see 2.4.2 Analysis of Pupil Size
Values). We compared candidate models by their average
Bayesian Information Criterion (BIC) and average R? scores
across participants.

Pupil event model. In a separate but complementary
analysis, we modelled the rate of micro-dilations and con-
strictions in response to information content changes. We
again down-sampled pupil size, computed slopes (using
np.gradient from Numpy in Python), and detected the location
of pupil events. Since 75 and 300 msec result in similar rate
patterns (3.5 Pupil Event Rate Analysis), we selected the
300 msec threshold for modelling.

Micro-events within a sequence might have many de-
terminants: time-related factors, such as the duration of the
trial or experiment; response-related factors, such as whether
a pupil response occurred before, and stimuli history-related
factors, whether the pupil has already responded to changes
in information content in the past. These factors must be
accounted for to establish the link between information con-
tent changes and pupil events.

To account for these factors, we used a generalized linear
model (using the statsmodels package in Python; Seabold &
Perktold, 2010). A Poisson regression model is the usual
choice for rate models; however, in our data, the occurrences
of pupil events were sparse (see Section S10). Upon the
observation that the Poisson model determined unusual
rates due to the excessive number of zeros, we used zero-
inflated Poisson regression (Lambert, 1992). Similarly, in the
data, the number of events per bin (each 50 msec) never
exceeded 1 due to the down-sampling operation. Thus, the

predictions from the Poisson regression can be interpreted as
probabilities.

The model had two components with separate logistic link
functions: a logistic model for Os (i.e., the inflation) and a
Poisson regression model for event counts (i.e., Poisson
model). Apart from the random effect of information content
changes, we included the same regressors in this model as
those used in the pupil size model. (a) To estimate the
temporally varying effect of information content changes, we
convolved them with PRFs. To identify model components, we
applied the same model comparison procedure used for the
pupil size model. We included (b) pupil baselines, (c) pupil drift
to estimate spontaneous changes in event rate within a trial,
and (d) block order to account for time-related effects.

We fit two models: one for identifying the rate of micro-
dilations and one for micro-constrictions. To specify model
components, we ran an optimization procedure (see Section
510) and found parameter sets that minimized the negative
log likelihood of the model for each participant. We did not
use R? as it is not a proper metric for count models.

For both pupil size and event models, we used the fixed-
effect coefficients to determine the link between pupil
behaviour and the factors of interest (information content,
intercept, pupil baseline, pupil drift, and block order). T values
were calculated by comparing participant-specific coefficients
to 0, and BF;o were calculated as a measure of evidence.

3. Results
3.1. Behavioural performance in gap detection task

Participants reached similar performances on gap detection
during RAND10 (with the longer gaps) and REG10 (Fig. 4; see
Section S1 for a comparison with Zhao et al., 2019). Paired two-
sided t-tests over hit and false alarm rates did not reveal a

100

& i

o)
o
H

(@]
o

Hit and false alarm rate
for gap detection [%]

N
o

92.61
1.27

87.75
2.64

N
o

hit fa hit fa
REG,, RAND,,

Fig. 4— Hit and false alarm rates of participants in the gap
detection task. Note. Gap detection performance of
participants in the current study. Single points correspond
to the performance of individual participants. Error bars
indicate bootstrapped 95% ClIs.
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Fig. 5— Pupil dilation responses in the experiment. Note. Pupil size over time. (A) PDRs were induced by violation of
regularities. This could either be a transition from a regular pattern to a random pattern (REG10-RAND10), or from one
regular pattern to another regular pattern (REG10a-REG10b). In contrast, the transition from a random to a regular pattern
(RAND10-REG10) did not induce PDRs—similar to the control conditions without transition (REG10, RAND10). Pupil size is
given as normalized change from baseline (which extended from —1 sec to 0 sec before the transition). Goloured horizontal
lines indicate Bayes factors for the difference between each transition condition and the corresponding no-transition
control condition, with the varying thickness indicating different evidence levels (BF,, > 1, 3, and 10). (B) Average
normalized pupil size over time in no-transition control conditions. These conditions led to similar pupil size changes (pupil
sizes extended from —1 sec to 0 sec before the trial onset were used for baseline correction). This finding suggests that PDRs
to the violation of regularities (REG10-RAND10 and REG10a-REG10b) but not to the emergence of regularities (RAND10-
REG10) are not a side effect of baseline pupil size differences between RAND10 and REG10. Shaded areas indicate the

between-participant SEMs.

significant difference [Hit rates: p = .31, 95% CI = (-.1, .3),
d, = .31; False alarm rates: p = .2, 95% CI = (—.04, .01), d, = .41].
Bayes factor analyses moderately favoured the null hypothe-
sis (Hit rates: BF;o = .361; False alarm rates: BF;; = .483).

3.2.  Analysis of PDRs

We statistically compared transition conditions with corre-
sponding no-transition control conditions. The emergence of
auditory regularities in RAND10-REG10 trials did not induce
PDRs. By contrast, the violation of auditory regularities in
REG10-RANDI10 trials did elicit PDRs (Fig. 5A). We observed
that the pupil responds to regularity violations at around
620 msec. Specifically, BFjp > 1 is observed at 620 msec
(BF10 = 1.32) and BF;o > 3 at 680 msec (BF;o = 3.58). After that,
the pupil diameter increases steeply until 1500 msec, with a
magnitude of approximately .25, gradually dropping.

Similarly, REG10a-REG10b, the violation of auditory regu-
larities and the emergence of new regularities, elicited PDRs
(Fig. 5A). Similar to REG10-RAND10, PDRs in REG10a-REG10b
deviated from REGI10, the baseline. BF,, value exceeds 1 at
620 msec (BF;o = 1.25) and 3 at 680 msec (BF;o = 3.24).

Both Bayesian and frequentist statistical tests indicate that
the evidence for differing pupil sizes gradually decreases for
REG10a-REG10b but not for REG10-RAND10. This trend is
visible at 2750 msec (REG10a-REG10b: BF;o = 1.30, p = .128;
REG10-RAND10: BFo = 3.74, p = .032) and continues by the end
of the trial (REG10a-REG10b: BF,, = .83, p = .247; REG10-
RAND10: BF;o = 3.58, p = .034). The direct comparison did
not show a statistically significant effect (mean statistical

values 2—3 sec post-transition: BFo = .43, p = .22, d, = .35). We
will elaborate on this point in the discussion.

Regularity violations (REG10-RAND10, REG10a-REG10b) but
not their emergence (RAND10-REG10) evoked PDRs (see Sec-
tion 2 for a comparison with Zhao et al., 2019). Additional
statistical analyses using significant clusters (p < .05) and
orthogonal polynomials (see Figures S3 and S7) further
confirmed these findings.

To create the stimuli for the REG10a-REG10b condition, we
randomly sampled REG10a and REG10b patterns. This random
sampling operation introduced varying degrees of dissimi-
larities between these patterns. As the dissimilarity between
the two patterns increases, the magnitude of PDR could also
increase because the degree of violations will be greater. As an
exploratory analysis, we quantified the dissimilarity between
REG10a and REGI0b using edit distance methods (Navarro,
2001; Wagner & Fischer, 1974; Yu et al., 2016). We observed
using linear-mixed effect models that the degree of dissimi-
larity between REG10a and REG10b could positively influence
the magnitudes of PDRs (8 = .05, R> = .37) but had little or no
impact on their temporal properties (see Section S8).

3.3.  Analysis of sustained pupil sizes

To examine whether pattern type affects sustained pupil
sizes, we compared pupil sizes in REG10 and RAND10. Fig. 5B
shows no considerable difference between REG10 and
RAND10, suggesting that PDRs to the violation of regularities
(REG10-RAND10 and REG10a-REG10b) but not to the emer-
gence of regularities (RAND10-REG10) are not a side effect of
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in regularity violation conditions (REG10-RAND10, REG10a-REG10b). Pupil sizes following two types of regularity violations
showed a high and reliable correlation. The data were split according to the median sensitivity to examine if performance
(as a proxy of the attentional state of participants) affects this relationship. Participants with high d’ seemed to show a
slightly low correlation between regularity violation conditions. This finding suggests that participants’ attentional state

does not impact this relationship.

baseline pupil size differences between RAND10 and REG10
(See Figure S11 for the sustained pupil responses prior to
baseline correction?).

3.4. Effect of gap detection performance on pupil size
Most participants' pupil sizes increased due to regularity vio-
lations. Specifically, as a descriptive statistic, 18 out of 22
participants in the REG10a-REG10b and 17 in the REG10-
RAND10 conditions demonstrated a pupil size increase
(Fig. 6A). Conversely, although the emergence of regularities
predominantly led to a reduction in pupil size (N = 16), the
magnitude of this decrease was smaller than the increase in
pupil size observed in response to regularity violations.

Pupil sizes following two types of regularity violations
showed a high and reliable correlation [r = .62, BF;o = 21.81,
p = .002, 95% CI = (.27, .82); Fig. 6B]. To investigate whether
participants' gap detection performance (as a proxy of their
attentional state) affects this relationship, we controlled per-
formance variables (d’, hit rate, and false alarm rates) by
partial correlation. We observed only a minor change [r = .64,
BF10 =29, p =.002, 95% CI = (.27, .82)]. Further, to investigate if
this correlation is affected by participants' performances, we
split participants into two groups based on the median

2 As recommended by an anonymous reviewer.

sensitivity (d’ = 3.33) and computed correlations separately:
the results were similar across groups [low d: r .75,
BFyo = 844, p = .007, 95% CI = (.27, .93); high d: r = .6,
BF1o = 2.14, p = .048, 95% CI = (.01, .88); difference: z = —.54,
p = .586, BF,o = .33; Fig. 6B].

Participants' performance, as estimated by d’, was not
associated with pupil size [Pupil baselines: r = .16, BF;o = .330,
p = .49, 95% CI = (—.29, .54), mean PDRs: r = .09, BF;o = .287,
p = .678,95% CI = (—.34, .50)]. Hit and false positive rates led to
similar results. We extended these results with RTs of par-
ticipants; results were not strong (pupil baselines: r = .33,
BFyo = .75, p = .135, 95% CI = [-.11, .66]; PDRs: r -.3,
BFio = .64, p = .17, 95% CI = [—.64, .14]). Overall, these results
suggest that the irrelevant task performance did not affect
PDRs but may affect pupil baselines (RTs but not d).

3.5. Pupil event rate analysis
To determine the effect of transitions between patterns on
pupil responses, we determined micro-dilations and micro-
constriction events and computed their rates over time.
Pupil event rate analysis conducted using 75 and 300 msec
thresholds for the minimum gaps between successive de-
tections yielded comparable results with the literature (see
Section S4 for a comparison with Zhao et al., 2019 and Section
S5 for number and size of these events). Fig. 7A shows that
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Fig. 7— Pupil event rate analyses. Note. Pupil dilation and constriction rates computed using a running average with a
500 msec window. (A) Dilation rates for REG10-RAND10 and REG10a-REG10b increased due to transitions. On the other hand,
the transition from RAND10 to REG10 did not lead to an increase in pupil dilation rate. (B) Pupil constriction rates mirrored
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dilation rates for REG10-RAND10 and REG10a-REG10b became
apparent after the transition. The transition from RAND10 to
REG10 did not lead to an increase in pupil dilation rate. Fig. 7A
and B shows that pupil constriction rates mirrored dilation
rates.

Our results diverged from the reported baseline event
rates in the literature (Zhao et al., 2019; see Section S4).
After reanalysing their publicly available data, we deter-
mined that the event rates should be approximately .75 Hz
and .35 Hz for 75 msec and 300 msec, respectively, and not
3 Hz and 1.4 Hz. S. Zhao generously confirmed these
revised estimates (S. Zhao, personal communication, June
12, 2023).

3.6. Information content analysis

So far, we have shown that transitions between regular pat-
terns affect pupil responses. While the violations of regular-
itles predominantly evoke PDRs (Figs. 5 and 6), their
emergence may lead to small pupil constrictions (Fig. 6). We
now describe our results on the relationship between infor-
mation content changes and PDRs.

We evaluated the predictability of tones within a trial using
the IDYOM model, serving as a framework for estimating the
relationship between information content changes and PDRs.
In the following sections, we examine: (a) information content
changes due to transitions, (b) the results of our models
relating these changes to pupil size and micro-events, and (c)
the relationship between irrelevant task performance and
model parameters.

3.6.1. Effects of transitions on information content

The IDYOM model suggests that the statistical conditions
for detecting the violation (REG10-RAND10, REG10a-REG10b)
and the immediate emergence (RAND10-REG10) of regular-
ities differed in response to these transitions. We observed
a gradual reduction in information content for RAND10-
REG10 just after the transition (Fig. 8A), thereby indicating
the opportunity for a slow and progressive model update.
By contrast, IDYOM reported an abrupt increase in infor-
mation content for REG10-RAND10 and REG10a-REG10b,
indicating unexpected uncertainties that may lead to a
model reset.

The subsequent statistical characteristics of REG10-
RAND10 and REG10a-REG10b then gradually differed. The
average information content for REG10a-REG10b reduced
after approximately 15 tones (750 msec), reaching a base-
line after 20 tones (1000 msec), suggesting that the IDYOM
model had learnt the new regular patterns (REG10b). On the
other hand, the average information content for REG10-
RAND10 was stable until the end of the epoch, consistent
with the sustained expected uncertainty in RAND10
patterns.

Information content increases after the transition covaried
with PDRs (compare Fig. SA with Fig. 8A). However, sustained
and elevated information content changes did not seem to
have a substantial impact on them (see REG10-RAND10 after
the transition in Fig. 5A; compare REG10 and RAND10 in Fig. 5B
after the sound onset). These observations suggest that PDRs
may be more closely related to changes in information con-
tent than to its absolute values.
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represents transition times to the following pattern. The information content for the violation (REG10-RAND10, REG10a-
REG10b) and the emergence (RAND10-REG10) of regularities differed in response to transitions. The RAND10-REG10
condition presented a gradual reduction in information content, suggesting a gradual reduction of uncertainties as a sign of
model update. On the other hand, the REG10-RAND10 and REG10a-REG10b conditions indicated an abrupt increase in
information content, suggesting instant increase of uncertainties as a sign of model reset. Note that, for RAND10-REG10,
transition times are shifted one cycle (10 tones, .5 sec), given that the first ten tones in REG10 are indistinguishable from
random sequences of tones. For baseline correction, the mean of the 1-sec interval before the transition (from —1 sec to 0)
was computed and subtracted from each trial. (B) Information content changes after the transition. (C) Information content
changes for the whole trial. Note that transitions were jittered in the experiment; however, for visualisation, we selected
trials with a transition at 4 sec. The shaded area represents SEM.

We estimated information content changes to illuminate
uncertainties (Fig. 8B). Information content in REG10-RAND10
and REG10a-REG10b suddenly increased after the transition,
whereas those in RAND10-REG10 reduced. We used informa-
tion content changes from the whole trial as the basis of re-
gressors for modelling pupil magnitudes and events (see
examples in Fig. 8C).

3.6.2. Pupil size model results

We built 10 models with varying complexities to estimate the
relationship between information content changes and pupil
size. We compared these models using BICs and R? scores.
Some models yielded negative R? scores for a few participants
(3 participants in total). We dropped the data of these

participants from the dataset so we could compare the
models. Dropping these participants did not result in a
considerable change in mean PDRs, and did not affect the
order of BICs.

The most complicated model, IC + fit+* received the best
score (see Table 1; BIC = 6794 and R®> = .57). We discuss
IC + fit+* in the main text (see other models in Section S9).
Fig. 9 shows PRFs estimated for IC + fit+*.

Fig. 10 shows predictions of the IC + fit+*. The model could
capture the asymmetry between transition conditions; how-
ever, there were some nontrivial differences between actual
and predicted pupil responses. The model substantially
underestimated the magnitude of PDRs after regularity vio-
lations (REG10-RAND10, REG10a-REG10b) and could not

Table 1 Pupil response function parameters for pupil size models.

Models IC IC+ IC- (- R? BIC
tmax n tmax tmax n

IClit .93 sec 10.1 = = = = .14 14,440
ICfit 1.35 sec 1.41 — — — — 27 12,556
IC + lit - - .93 sec 10.1 .93 sec 10.1 - 3 12,415
IC + fit — — 1.96 sec 2.19 1.96 sec 2.19 — .52 8100
IC + fit+ - - 1.68 sec 2.76 1.71 sec 1.71 - .54 7356
IClit* .93 sec 10.1 — — — — 8 .15 14,257
ICfit* 1.06 sec 1.14 — - — — 8.5 .33 11,567
IC + lit* — — .93 sec 10.1 .93 sec 10.1 4.09 32 12,292
IC + fit* = = 1.95 sec 1.73 1.95 sec 1.73 8.02 .54 7499
IC + fit+* — — 1.78 2.88 1.89 sec 1.46 5.72 .57 6794

Note. Average pupil response function (PRF) parameters for pupil size models. Italic indicates free parameters; IC + fit and IC + fit* use the same
PRF for generating IC + and IC-. Bold shows the top two models.
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Fig. 9— Pupil response functions of the pupil size model.
Note. Pupil response functions. (A) Literature-based PRF
(Pupil Response Function). (B) The distribution of PRF
parameters that maximize the R? of participants (Red dots:
PRF parameters for positive information changes; blue
dots: negative changes). (C) PRFs of participants for positive
information content changes and (D) negative information
content changes. Participant-specific PRFs are represented
by different colours. Thick lines show average PRF
parameters.

predict the rapid decreases in PDRs after peaks (see REG10-
RAND10 in Fig. 10A).

Coefficients of pupil size model. We assessed the fixed ef-
fect coefficients of the IC + fit+* to estimate the relationship
between information content changes and pupil responses
(see coefficients of other models in Figure S10). Positive infor-
mation content changes affected the magnitude of pupil re-
sponses positively [Fig. 10C; IC+: B = .024, SEM = .0056,
BF;0 = 60.82, p < .001, 95% CI = (.01, .04)] and negative infor-
mation content changes negatively (a reduction in the absolute
value of negative information changes corresponds to an in-
crease in IC-), but the resulting statistical relationship was
weak [Fig. 10D; IC-: B =.0138, SEM = .0056, BF,o = 2.31, p = .027,
95% CI = (.0, .03)]. The effect of negative information content
was smaller than that of positive information content
[M =.0102, SEM = .0019, BF;0 = 298, p < .001, 95% CI = (.01, .01)].

Pupil baselines negatively affected PDRs [Fig. 10E; B = —.2709,
SEM = .039%4, BFyo > 1000, p < .001, 95% CI = (—.36, —.19)]. The
model suggests a pupil drift [Fig. 10F; B = .0019, SEM = .0005,
BF;0=13.3,p=.003, 95% CI = (.0, .0)], indicating that time within
a trial is associated with pupil magnitude increase, but no

consistent change across blocks [Fig. 10G; B = .0231,
SEM = .0166, BFyo = .526, p = .1907, 95% CI = (—.01, .06)]. The
intercept was strong across participants [Fig. 10H; B = —.1299,

SEM = .0351, BF; = 20, p = .002, 95% CI = (—.21, —.05)].
Irrelevant task performance and model parameters. We

examined the possible impact of performance variables for

the irrelevant task on the parameters of the pupil size model.

We did not observe any notable correlation between perfor-
mance variables and the coefficients of information content
changes (see Fig. 10I; BF;o values < .4 and ps > .45). These
numbers, combined with our earlier results, suggest that the
irrelevant task performance does not directly influence PDRs.

We observed a strong correlation between RTs and pupil
baseline coefficients [Fig. 10I; r = .498, BF1o = 3.56, p = .018, %95
CI = (.1, .76)]. Since low RT and high d’ are considered as a
proxy of effort, the relationship between pupil baseline co-
efficients and d' was consistent with this relationship
(r = —.378) but the statistical tests were inconclusive
[BF10 =1.088, p = .083, %95 CI = (.69, .05)]. These observations
agree with our earlier results, suggesting a relationship with
increasing effort (see RTs) and pupil baselines (see Section
3.4).

Pupil drift coefficients were related to d' [see Fig. 10I;
r = .466, BF1p = 2.49, p = .029, %95 CI = (.05, .74)]; however, for
RTs, the statistical tests were inconclusive [r = -.284,
BFio = .57, p = .2, %95 CI = (.63, .16)]. These results may
indicate that participants who performed well in the gap
detection task exhibited increasing PDRs within a trial.

Further, we investigated whether performance was asso-
ciated with PRFs (tmax Or n). For example, participants with a
good performance in the irrelevant task might have rapid or
shorter PDRs. Interestingly, no consistent relationship was
found with tmax Or n (ps > .3 and BF;o < .4) except the weak
relationship of RTs with the n of the PRF convolved with
positive information content changes (r = .45, p = .03,
BFy = 2.1).

Overall, pupil responses are associated with positive in-
formation content in the anticipated direction. The best
model, IC + fit+*, suggest a strong relationship between pos-
itive information content and pupil size (BF;o = 60.32). How-
ever, the relationship of pupil responses with negative
information content is weak (BF;o = 2.31). It is possible that,
although negative information content leads to a reduction in
pupil size (i.e., pupil constriction), this relationship is too
small to be detected using the smoothed, slowly varying, pupil
size (Hoeks & Levelt, 1993).

Therefore, we now turn our focus to the pupil event model
to clarify this relationship. The aim of this model is to assess
the relationship between information content changes and
micro-dilation and constriction rates.

3.6.3.  Pupil event model results

We followed the same model selection procedure as in the
previous. ICfit, the model that did not differentiate the type of
information content changes and did not estimate the effect
of trial onset, received the best score for both dilation
(BIC = 2848) and constriction events (BIC = 2572). We discuss
this model in the main text (see other models in Section S10).
PRFs estimated for micro-dilations and constrictions were
different (micro-constrictions: tmax = .96 sec, n = 50.35; micro-
dilations: tmax = 1.63 sec, n = 9.24; for tmax: BF10 = 56, p < .001;
for n: BF1p = 212, p < .001).

Fig. 11 shows predicted and actual event rates with respect
to trial onset up to 6 sec. In this figure, the effects of trial onset
and transitions can be seen together at 0 sec—2 sec and 3
sec—5 sec, respectively. The model for pupil dilation rates
could not predict rate increases after trial onsets (see the first
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Fig. 10— Pupil size model predictions and coefficients. Note. Pupil size model results. (A, B) Actual and predicted pupil
responses for transitions and the whole sound sequences up to 6 sec. Actual and predicted pupil responses were
represented by solid and dashed lines, respectively. (G, D, E, F, G, H) fixed-effect coefficients determined for the pupil size
model. (C) Estimated relationship between positive information content changes and PDRs. These types of changes are
positively correlated with PDRs, suggesting that information content increases lead to PDRs. (D) Effect of information
content reductions on PDRs. Adding information content reductions as a separate channel increased R? and reduced BIC but
their relationships with PDRs were not consistent across participants (BF1o = 2.31). (E) Pupil baselines, the mean of 1 sec
before the sound onset, had a negative relationship with PDRs. (F) Pupil drift, (G) block order, and (H) intercept. Single points
correspond to the coefficients of participants. Error bars represent SEMs. Coloured asterisks represent the degree BF,. (1)
Correlation between performance variables and coefficients of the pupil size model. The relationship between information
content changes (IC+ and IC-) and PDRs were not affected by performance variables. On the other hand, pupil baseline and

drift coefficients were highly correlated with them.

row of Fig. 11A, first .5 sec); however, it predicted well the
second point at which the pupil dilation rate increased (see up
to 1s in Fig. 11A) and the pupil dilation rate increase in
response to transitions (see the time range between 3 sec and
5 sec in Fig. 11B and C). The model for pupil constriction rates
performed similarly: it coarsely predicted constrictions with
small dispersions for trial onsets (see the time range between
0 and 1secin Fig. 11D—F), for transitions (see Fig. 11D between
3 sec and 5 sec), and for the end of epochs (see Fig. 11E).

Overall, models captured rate patterns based on informa-
tion content changes. However, they failed to capture the ef-
fect of trial onset and slightly underestimated the effect of
transitions.

Coefficients of pupil event model. Changes in information
content were positively associated with the rate of pupil di-
lations [Fig. 11G; B = .0866, SEM = .0137, BF; > 1000, p < .001,
95% CI = (.06, .12)]; However, their relationships with pupil
constrictions were not clear [Fig. 11G; B = —.0533, SEM = .0714,
BFyo = .283, p = .4743, 95% CI = (—.21, .1)].

There was no consistent impact of pupil baselines on
dilation [Fig. 11H; B = —.0075, SEM = .0162, BFyo = .24, p = .65,
95% CI = (—.04, .03)] and constriction rates [Fig. 11H; B = .0794,

SEM = .0683, BFyo = .4, p = .27, 95% CI = (.07, .22)]. The time
within a trial (i.e., pupil drift) reduced dilation [Fig. 11I;
B =—.1474, SEM = .03, BF;o = 275, p < .001, 95% CI = (—.21, —.08)]
and constriction rates [Fig. 11I; B = —.2231, SEM = .0193,
BF10 > 1000, p < .001, 95% CI = (—.26, —.18)].

There was no consistent change in pupil rates across
blocks [Fig. 11J; for constriction: B = .0608, SEM = .0577,
BFyp = .357, p = .3151, 95% CI = (-.06, .18); for dilation:
B = —.0184, SEM = .0246, BF o = .284, p = .4726, 95% CI = (—.07,
.03)]. Both models suggested intercepts [Fig. 11K; for dilation:
B = —2.805, SEM = .019, BF,, > 1000, p < .001, 95% CI = (—2.85,
—2.77); for constriction: B = —2.872, SEM = .0241, BF,, > 1000,
p < .001, 95% CI = (—2.92, —2.82)].

In line with the pupil size model, performance variables
were irrelevant to the impact of information content changes
on dilation [RTs: r = .12, BF;o = .302, p = .6, %95 CI = (.32,
52); d’: r = —.065, BFyo = .275, p = .775, %95 CI = (—.47, .37)]
and constriction rates [RTs: —.058, BFjp = .273, p = .8, %95
CI = (~.47, .37); d: r = .08, BFy = .28, p = .72, %95 CI = (—.35,
49)]. There was no notable relationship between pupil
baseline coefficients with performance variables (all BF; < .3
and ps > .75). We also analysed the possible relationship
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represent SEMs.

between performance variables and PRFs; there was no
notable and consistent correlation observed (all BF;o < 1.4
and ps > .06).

4. Discussion

We investigated how changes in patterns of fast-paced tones
are associated with pupil dilation and constriction. Consistent
with previous research (Zhao et al.,, 2019), we observed that

the emergence of regularities from random patterns did not
lead to PDRs. In contrast, the violation of regularities by
random patterns evoked PDRs. To generalise the earlier
research, we used a novel but conceptually similar condition
to induce regularity violations (REG10a-REG10b). We showed
that transitions between two regular patterns also evoked
PDRs, supporting the idea that it is not the presence of random
patterns but the violation of the antecedent regularity that
leads to PDRs.
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4.1. Information content and PDRs

We estimated information content of the stimulus sequences
using the IDYOM model (Pearce, 2005, 2018) and observed a
positive relationship between information content and PDRs,
supporting earlier results in the literature (Alamia et al., 2019;
Krishnamurthy et al., 2017; Nassar et al., 2012; Preuschoff et
al,, 2011; Filipowicz, Glaze, Kable, & Gold, 2020; Payzan-
LeNestour et al., 2013; Zhao et al., 2019). Namely, transitions
that led to an information content increase evoked PDRs (i.e.,
REG10-RAND10 and REG10a-REG10b) and those that led to a
reduction did not (i.e., RAND10-REG10).

How does the information content evoke PDRs? The cur-
rent empirical evidence indicates that changes in information
content, but not its absolute level, are associated with PDRs.
For example, (a) although information content profiles of
REG10-RAND10 and REG10a-REG10b were quite different after
the transition (see Fig. 8A), we only observed a statistically
weak difference between them in terms of PDRs (see Fig. 4a).
In line with this observation, (b) we did not observe a differ-
ence between RAND10 and REGI10 (in contrast to earlier ob-
servations in the literature, see Milne et al., 2021). If the pupil
had been sensitive to absolute information content level,
there would have been a substantial difference between these
conditions.

However, these conditions (RAND10 versus REG10; REG10a-
REG10b versus REG10-RAND10, 750 msec after the transition)
still showed differences in terms of information content
changes. For example, a RAND10 pattern still presents fluctu-
ations of positive and negative information content in contrast
to a REG10 pattern (see Fig. 8A, compare REG10-RAND10 and
REG10a-REG10b after switching to a new pattern).

Based on these observations, we used changes in informa-
tion content (Fig. 7A) as a proxy for the uncertainty that par-
ticipants would perceive during the experiment and
investigated their relationships with pupil responses. We
developed two types of models to investigate how information
content changes relate to PDRs. The first type of model focused
on slowly varying pupil size and the magnitude of pupil re-
sponses; the second type of model focused on quick changesin
pupil size and the micro-dilation and constriction rates.

In our models, we used PRFs either to estimate the effect of
information content changes on timing of pupil responses or
as a tool for investigating the temporally varying effect of in-
formation content changes on pupil event rates. We estimated
PRFs based on an optimization procedure for each participant;
we leave a fully Bayesian analysis of the parameter un-
certainties to future work.

4.2. Pupil size model

We employed a convolutional approach based on linear
models (Cai et al., 2023; de Gee et al., 2014; Denison et al., 2020;
Hoeks & Levelt, 1993; Wierda et al., 2012) to analyse the link
between information content changes and the magnitude of
PDRs.

We used a set of models with varying complexities to
pinpoint essential model components that explain the rela-
tionship between information content changes and pupil re-
sponses. The top two models (IC + fit+* and IC + fit+) that

differentiated the effects of negative and positive information
content changes on pupil responses received better BICs and
R? scores than other models. However, the poor result of
IC + lit and IC + lit* indicate that differentiation of these sig-
nals by itself was not sufficient; models including participant-
specific PRFs were consistently better than those using the
literature-based PRF, indicating a trend favouring individual
variabilities (Denison et al., 2020).

IC + fit+* was able to capture the increase in pupil size.
However, for conditions where a regularity was violated, it
underestimated the peak magnitude, and after peaks, it
overestimated the pupil response magnitude especially for
REG10-RAND10. Nevertheless, the model accurately captured
the main asymmetry between transition conditions. Co-
efficients of the model suggested a relationship in the pre-
dicted direction: while positive information content is
associated with pupil size increase (i.e., dilation; BF;o = 60.82),
negative information content is associated with pupil size
reduction (i.e., constriction; BF;o = 2.32). However, note that
the latter relationship was weak.

We observed from estimated PRFs of participants that (a)
the average peak pupil response to information content (tmax)
was 1.78 sec in contrast to the literature’s suggestion of .93 sec
(b) The parameter that controls the width of PDRs (n) was
around 2.9 in contrast to the literature’s suggestion of n = 10.1
(Hoeks & Levelt, 1993). Hoeks and Levelt (1993) had already
pointed out that n was quite variable between participants
(n=10.1 + 4.1 o). We believe that this is a fundamental area to
be explored in the future.

One limitation of the current model is that its results could
not be cross-validated on unseen data, probably due to trial-
by-trial variability of pupil size. Early research cross-
validated its results with the mean of unseen data (Denison
et al,, 2020). Since we were interested in the trial-by-trial
relationship between information content changes and the
time course of pupil size, we focused on trials.

4.3. Pupil event model

The pupil size model focuses on the relatively slow dynamics
of pupil responses (Hoeks & Levelt, 1993). However, this may
mis-characterize the relationship between pupil responses
and fast changes in information content. Based on the
inconclusive results of pupil size model for the relationship
between negative information content changes and pupil
constrictions, we focused on micro-events. Specifically, to
identify the conditions that lead to the emergence of micro-
events, we modelled their rates based on several predictors,
including changes in information content.

For pinpointing the essential model components, we fol-
lowed the same comparison procedure as for the pupil size
model. This procedure chose one of the simplest models for
pupil events, namely ICfit. In contrast with the model selected
for pupil size (i.e., IC + fit+*), this model does not estimate the
value of information content changes for individual partici-
pants; and does not suggest a differential sensitivity of pupil
rates for positive and negative information content changes.
Therefore, the result of model selection procedure only
allowed us to investigate the cumulative impact of informa-
tion content changes on event rates.
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The event model suggests that information content change
is positively associated with the rate of dilations (BF; > 1000).
This result is similar to the result of the pupil size model,
demonstrating that positive changes in information content
are positively associated with the magnitude of pupil re-
sponses (i.e., dilation). However, the relationship between
information content changes and the rate of pupil constric-
tions is not clear.

Our results, in combination with those of the pupil size
model, show that information content increase (i.e., model
reset) is positively associated with an increase in the magni-
tude of slowly varying pupil size and the rate of micro-
dilations. However, there was no reliable relationship be-
tween information content reduction (i.e., model update) and
the magnitude of pupil size as well as the rate of constrictions.
This observation does not fully align with a previous study,
which reported that a reduction in information content during
a trial led to pupil constriction (Milne et al., 2021). However,
the study only found a significant difference with a stimulus
of similar complexity to ours after 7 sec, suggesting that the
effect of information content reduction on pupil responses
may be slow.

Our modelling approach assumes that the same informa-
tion content will always lead to the same PDRs, positive/
negative information content changes and PDRs are related
linearly, and the characteristics of this relationship do not
change over time. These properties have been demonstrated
to hold in other domains such as for modelling the effect of
simple auditory and visual stimuli on PDRs (Hoeks & Levelt,
1993) and were utilized to model pupil responses in earlier
studies for various phenomena such as attention and
decision-making (Cai et al., 2023; de Gee et al., 2014; Denison
et al., 2020; Hoeks & Levelt, 1993; Wierda et al., 2012). The
current models captured the coarse dynamics of pupil
behaviour in response to changes in information content
within sound sequences; however, it is still an open question
if these assumptions are appropriate for modelling the impact
of continuous, very rapidly changing signals on PDRs.

4.4. Irrelevant task performance and pupil responses

Previous research has not clarified the relationship between
irrelevant task performance and PDRs (Zhao et al., 2019). We
observed in our study that there was insufficient evidence for
any impact of performance variables (RTs and d) on PDRs
generated by regularity violations. Further, we tested their
possible effects on the coefficients of the IC + fit+* of pupil size
model and the ICfit of pupil event model, demonstrating that
there was no direct impact of performance variables on PDRs
to changes in information content.

These results overall suggest that the modulation of irrel-
evant task performance of the relationship between infor-
mation content and PDRs is small, if not absent. Our
replication results are consistent with this notion: although
our participants performed slightly less well in the irrelevant
task than Zhao et al. (2019)’s participants, the observed PDRs
were highly similar.

Does irrelevant task performance affect baseline pupil
size? In contrast to earlier observations that the task difficulty
increases pupil baselines (van der Wel & Van Steenbergen,

2018), in our first analysis based on average baseline pupil
sizes, we could not pinpoint a strong relationship. On the
other hand, participants' RTs and their coefficients of pupil
baselines in the pupil size model were highly and positively
correlated. This observation is in line with previous research
reporting that task dynamics, such as task difficulty, affect
baseline pupil responses (Relano-Iborra et al., 2022).

Given that pupil baselines impact the magnitude of PDRs
negatively, the irrelevant task performance may disguise
possible increases in PDRs, especially when the pupil size is at
ceiling. A recent report suggests that the slope, delay and
curvature of PDRs along with peak pupil responses (but not
mean pupil responses) are affected by pupil baselines (Relano-
Iborra et al., 2022). We did not observe a consistent effect of
baselines (in terms of size) on pupil event rates. We propose
future research examines the rich effect of baseline pupil re-
sponses on the time course of pupil responses as well as the
rate of pupil events.

4.5. Pupil response times

We observed a slight pupil response time difference between
regularity violation conditions in the analysis using linear
regressions for baseline correction. However, we could not
validate this result in further analyses. Statistical tests and
exploratory analyses suggest that although participants' pupil
response times varied, pupils responded to regularity viola-
tions -on average-after 600 msec (see Section S6).

To model the temporal relationship between information
content changes and micro-events. This model suggests that
average peak pupil responses to positive information content
changes are at around 1.6 sec. This result does not exactly
align with the results of Joshi et al. (2016), who observed that
electrical micro-stimulation of the LC leads to maximum
evoked pupil size change after approximately 500 msec in
primates. Considering that the human brain needs around
150 msec to detect violations of regularities (Barascud et al.,
2016), the peak pupil response should still be around
650 msec. These figures do not exactly match with the
numbers in the literature, further research is needed to
establish the timing of PDRs to changes in environmental
statistics.

4.6. Possible neural and neuromodulatory
underpinnings

Overall, these results suggest that PDRs are a reliable
biomarker of the violation of an already established internal
model. In this respect, they resemble the MMN, a specific
negative neural response shown in EEG and MEG (Magneto-
encephalography) to deviant events that violate a simple,
sequential standard tone or abstract rule-based structures
(Paavilainen, 2013). Further research inspired by the MMN
literature should investigate the conditions that can modulate
PDRs associated with model reset.

However, the MMN is not the only neural response that can
be associated with PDRs. Relationships between PDRs and
various brain signals have previously been investigated. One
candidate brain signal is the P300 component in EEG. P300 has
been suggested to reflect the response of the LC-NE system to
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the outcome of internal decision-making to significant events
(Nieuwenhuis et al., 2005), context updating in response to
critical changes in the environment (Donchin & Coles, 1998),
and other cognitive processes (Verleger, 2020). Studies
explored the relationship between P300 (also referred to as P3)
and its subcomponents (P3a and P3b) with pupil-related
measures. For example, Murphy et al. (2011) investigated the
relationship of baseline and PDRs with P300 in an active
auditory oddball task and documented that baseline pupil size
has a U-shaped relationship with P300; however, PDRs were
only correlated with P300s that were elicited in later trials.
Using an active auditory oddball task, Hong et al. (2014)
observed a negative relationship between baseline pupil size
and P3, but P3 was not associated with PDRs. Lu et al. (2023)
only recently observed a positive relationship between PDRs
and P300 in a gamified version of an n-back task.

In all these studies (Lu et al., 2023; Murphy et al., 2011; Hong
et al., 2014), participants were instructed to do tasks that
required active tracking of environmental statistics, which
could modulate the arousal system (Zhao et al., 2019). In the
present study, by contrast, participants were not instructed to
make decisions based on environmental statistics. Instead,
they were instructed to find task-irrelevant gaps. Considering
the modulatory effect of behavioural requirements (Zhao
et al,, 2019) and motor responses (Privitera et al., 2010) on
the arousal system and PDRs, a remaining question is how
various event related potentials in EEG and MEG, including
P300, are associated with PDRs and whether behavioural re-
quirements modulate this association.

The literature consistently showed the relationship be-
tween PDRs and phasic activity of the LC-NE system (de Gee
et al., 2017; Joshi et al., 2016; Murphy et al., 2014; Reimer
et al., 2016; Strauch et al., 2022). However, it is important to
note that a wide range of neural pathways can influence pupil
dynamics (Joshi et al., 2016; Joshi & Gold, 2020; Strauch et al.,
2022), and these pathways are also engaged in various
perceptual and cognitive processes. This suggests other
members of the arousal network that might modulate pupil
responses to changes in environmental statistics. One brain
area that needs to be considered is the basal forebrain-ACh
system (Larsen & Waters, 2018; Lloyd et al., 2023; Strauch
et al., 2022). Like the LC, the basal forebrain has extensive
projections in the brain and regulates learning and attention
by prioritizing bottom-up sensory processing using ACh as a
medium (Bentley et al., 2011; Yu & Dayan, 2005). Therefore, the
neurotransmitter ACh may mediate expected uncertainties
and evoke pupil constrictions through antagonistic interac-
tion with NE that has been associated with pupil dilations (Yu,
2012). However, recent observations report that ACh has a
dilatory effect on pupils of moving (Mridha et al., 2021; Nelson
& Mooney, 2016) as well as idle mice (Reimer et al., 2016). Also,
a recent report indicates that the basal forebrain-ACh activa-
tion measured via fMRI accompanies pupil dilations in resting
humans (Lloyd et al., 2023). Further research is necessary to
elucidate the effects of brain regions along with the associated
neuromodulators on pupil size and how environmental sta-
tistics lead to the observed effects.

Our condition in which regularities emerge from random
patterns (RAND10-REG10) can be interpreted based on the
observation that the basal forebrain-ACh activation leads to

an increase in pupil size. Since emerging regularities are
learnable, this condition must allow gradual model update
and reduction of expected uncertainties. Given the suggested
relationship between ACh and expected uncertainties (Bouret
& Sara, 2005; Dayan & Yu, 2003; Marshall et al., 2016; Nassar
et al,, 2012; Yu & Dayan, 2005), emerging regularities should
covary with the reduction of ACh (Milne et al., 2021; Reimer
et al., 2016), possibly leading to a reduction of ACh-driven
pupil dilation in the light of recent observations in the litera-
ture (Larsen & Waters, 2018; Lloyd et al., 2023; Mridha et al.,
2021; Nelson & Mooney, 2016; Reimer et al., 2016; Strauch
et al.,, 2022).

4.7. Limitations and future studies

In our experiment, we included RAND10-REG10 as an instance
of emergence of regularities. However, this transition is rather
stark, and it would be interesting to present semi-
deterministic (rather than fully deterministic) patterns after
random patterns that involve tones breaking the predictable
structure. An anonymous reviewer suggested the possibility
of manipulating the rate of evidence for a regularity, for
example, by changing a tone at each repeat and keeping it at
the same place until the new regularity is established.
Thereby, the relationship of gradual model update and pupil
responses can be better understood.

We used changes in information content as a proxy for the
degree of environmental changes that update or reset internal
models. However, the brain might be using other heuristics to
determine when to reset internal models, and these heuristics
do not always accompany information content increases. For
example, Zhao et al. (2019) observed that pupils respond to
transitions from random patterns to very simple regular pat-
terns that consist of 1 or 2 repeating tones (i.e., RAND10-REG1
and RAND10-REG2). Since these simple regular patterns
become immediately predictable, the IDYOM model would
produce abrupt negative changes in information content. The
current models assume a continuous and linear mapping
between information content changes and PDRs, and so
cannot explain this observation. Future studies should extend
our results to clarify further the link between pupil responses
and internal model changes.

Given the spontaneous nature of PDRs to information
content that leads to model reset, future studies should
investigate PDRs associated with the reset of models built for
different modalities, such as vision or tactile, or the properties
of models built in conjunction with other models. Through
this approach, the relationship between different types of
internal models and their relationships with the arousal sys-
tem can be better understood.

5. Conclusion

Many studies suggest that phasic LC-NE activation relates to
PDRs (de Gee et al., 2017; Joshi & Gold, 2020; Murphy et al.,
2014; Reimer et al., 2016); thereby, the PDR is considered a
biomarker of the NE and arousal response. Our results directly
supported earlier research (Zhao et al., 2019) that PDRs are
associated with internal model reset as a response to abrupt
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violations of predictive relationships (i.e., unexpected un-
certainties). The size and rate of PDRs appear to reveal the
sensitivity of the LC-NE system to environmental changes,
even when these changes are not behaviourally relevant,
which is consistent with its role as a neural reset signal.
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