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a b s t r a c t

The brain builds and maintains internal models and uses them to make predictions. When

predictions are violated, the current model can either be updated or replaced by a new

model. The latter is accompanied by pupil dilation responses (PDRs) related to locus

coeruleus activity/norepinephrine release (LC-NE). Following earlier research, we investi-

gated PDRs associated with transitions between regular and random patterns of tones in

auditory sequences. We presented these sequences to participants and instructed them to

find gaps (to maintain attention). Transitions from regular to random patterns induced

PDRs, suggesting that an internal model attuned to the regular pattern is reset. Transitions

from one regular pattern to another regular pattern also induced PDRs, suggesting that

they also led to a model reset. In contrast, transitions from random patterns to regular

patterns did not induce PDRs, suggesting a gradual update of model parameters. We

modelled these findings, using pupil response functions to show how ongoing PDRs and

pupil event rates were sensitive to the trial-by-trial changes in the information content of

the auditory sequences. Expanding on previous research, we suggest that PDRsdas bio-

markers for LC-NE activationdmay indicate the extent of prediction violations.

© 2024 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The sensory input from natural environments exhibits sta-

tistical regularities over multiple temporal and spatial scales.

A wide range of studies has observed that humans are sensi-

tive to these statistical regularities and track them (Barascud

et al., 2016; Canale, 2022; Frost et al., 2019; Paavilainen, 2013;
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Sherman, Graves, & Turk-Browne, 2020; Zhao et al., 2019) to

improve their performance in perceptual and cognitive tasks

(Bestmann et al., 2008; Krishnamurthy et al., 2017). However,

statistical regularities in the environment are constantly

violated, and new regularities emerge.

Zhao et al. (2019) observed that the violation of such sta-

tistical regularities (i.e., deviations from regular patterns) but

not their emergence from random patterns led to sharp
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increases in pupil size (i.e., pupil dilation responses, PDRs in

short). Based on earlier studies (Joshi et al., 2016; Reimer et al.,

2016), Zhao et al. (2019) interpreted these PDRs as reflecting

the activity of the locus coeruleus-norepinephrine (LC-NE)

system, a vital part of the arousal system in the brain. The

results were taken as suggesting that an internal model,

reflecting a regular pattern, resets upon encountering a

random pattern. Conversely, the internal model for a random

pattern is not reset upon the onset of regularity, but instead

undergoes a gradual update in its parameters, as the violation

of randomness is statistically harder to determine. Hence,

Zhao et al. (2019) suggested that the reset, but not the update,

of internal models leads to PDRs.

Despite consistent observations, the influence of the

violation and emergence of regular patterns on pupil re-

sponses (either constriction or dilation) has yet to be fully

investigated. In this study, we first replicated and generalized

the findings of Zhao et al. (2019), and then went on to quantify

the relationship between the information content of the sta-

tistical patterns and the associated pupil responses. In the

following sections, we will first highlight the empirical and

theoretical background of this research and then describe our

study in detail.

1.1. Expected and unexpected uncertainties

Internalmodels of statistical relationships in the environment

are affected by changes that generate uncertainty by violating

predictions (Dayan & Yu, 2003, 2006; Gershman & Niv, 2010;

Wilson et al., 2013; Yu & Dayan, 2005). Two types of un-

certainties can be defined: expected and unexpected un-

certainties. Expected uncertainties arise because of modelled

unreliability of predictive relationships and mirror the

inherent stochasticity of the environment. When these un-

certainties are epistemic rather than aleatoric,1 they can lead

to model update which is accompanied by a decrease in the

expected uncertainty. Conversely, unexpected uncertainties

invalidatemodels, requiring them to be replaced (Dayan& Yu,

2003, 2006; Nassar et al., 2012; Payzan-LeNestour et al., 2013;

Yu & Dayan, 2005; Zhao et al., 2019), thus leading to model

reset. Expected and unexpected uncertainties suppress top-

down expectations and increase the importance of newly

acquired information (Dayan&Yu, 2003, 2006; Farashahi et al.,

2017; Soltani & Izquierdo, 2019).

Although uncertainties are subjective (Yu, 2012), they can

be approximated from the perspective of an ideal observer

model that learns optimal predictive relationships between

events (Barascud et al., 2016; Pearce, 2005). The strength of

these predictive relationships can be quantified by estimating

the negative probability of events based on the history of the

observer (MacKay, 2003). This measure is often referred to as

information content, self-information or surprise. We now

discuss how this measure illuminates the different types of

uncertainties that we encounter.
1 Epistemic uncertainties stem from the incomplete knowledge
of an observer and can be reduced by new information. By
contrast, aleatoric uncertainties arise from irreducible stochas-
ticity, for example, the outcome of a fair coin toss (Hüllermeier &
Waegeman, 2021).
The dynamics of the information content varies with the

different types of uncertainty. Known deterministic environ-

ments in which a single input sequence repeats are perfectly

predictable, and so have zero information content. Thus, any

change in these types of environments is a form of unex-

pected uncertainty, which is associated with an information

content increase that is immediately apparent when pre-

dictions are violated. Such a change results in a reset of the

model that is built for the sequence. If the result of the change

is a different deterministic environment, the information

content will then gradually decrease to zero as the perfect

predictability becomes apparent.

Uniformly random environments, on the other hand, have

maximal information content and full expected uncertainty,

since they are completely unpredictable. When they change,

for instance by becoming deterministic, the information

content can only decrease. However, this change is difficult to

pinpoint, because a repeating deterministic sequence is a

possible, if increasingly unlikely, draw from the stochastic

environment. Thus, there is no abrupt model reset, and only

progressivemodel update.Wewill revisit this topic laterwhen

we examine the relationship between information content

and PDRs.

1.2. Uncertainties, the LC-NE system, and PDRs

It has been suggested that the difference between expected

and unexpected uncertainty is putatively accompanied by

differences in the release of neuromodulators, as un-

certainties signal when computation and plasticity are

required. Thus, environmental changes can drive the brain’s

arousal systems. Expected uncertainty has been related to the

neuromodulator acetylcholine (ACh) and unexpected uncer-

tainty with norepinephrine (NE; Dayan & Yu, 2003; Bouret &

Sara, 2005; Marshall et al., 2016; Nassar et al., 2012; Yu &

Dayan, 2005).

In keeping with this suggestion, one role for the LC-NE

system is regulating arousal via widespread NE release

(Aston-Jones & Cohen, 2005; Carter et al., 2010; Joshi & Gold,

2020; Nassar et al., 2012; Sara & Bouret, 2012). Indeed, NE has

been suggested as the medium by which unexpected un-

certainties lead to a global reset signal across the brain (Bouret

& Sara, 2005; Dayan & Yu, 2006; Yu & Dayan, 2005; Zhao et al.,

2019); this then disrupts top-down cognitive processes and

prioritizes the accumulation of bottom-up sensory informa-

tion, thereby accelerating the discovery and establishment of

models of new structure in the environment.

Neurological studies of animal models suggest that PDRs

correlate with the LC-NE system’s phasic activity (Strauch

et al., 2022). For example, Reimer et al. (2016) found that

phasic activity in NE was associated with PDRs in mice and

Joshi et al. (2016) observed that the activation of the LC-NE

system preceded an increase in pupil size. Further research

based on fMRI (functional magnetic resonance imaging) sug-

gested that pupil size was positively correlated with BOLD

activity in the LC in humans (de Gee et al., 2017; Murphy et al.,

2014). Therefore, from this perspective, PDRs can be consid-

ered a biomarker of the LC-NE system activity. The relation-

ship of PDRs with arousal and learning rate further

strengthens this idea (Nassar et al., 2012).

https://doi.org/10.1016/j.cortex.2024.10.023
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1.3. Information content and PDRs

In line with the suggested role of PDRs as a biomarker of the

LC-NE activation, a wide range of studies has shown that PDRs

were evoked in response to events with high information

content (unexpected, surprising events; Alamia et al., 2019;

Krishnamurthy et al., 2017; Payzan-LeNestour et al., 2013;

Nassar et al., 2012; Preuschoff et al., 2011; Filipowicz, Glaze,

Kable, & Gold, 2020; Z�enon, 2019; Zhao et al., 2019). Most of

these studies used tasks that required explicit tracking of the

environmental statistics (Krishnamurthy et al., 2017; Nassar

et al., 2012; Preuschoff et al., 2011; Filipowicz, Glaze, Kable, &

Gold, 2020). Recent studies also explored PDRs in scenarios

where no explicit tracking of the environmental statistics was

required, thereby testing whether such PDRs can also be

evoked spontaneously in response to events with high infor-

mation content (Alamia et al., 2019; Bianco et al., 2020; Milne

et al., 2021; Zhao et al., 2019). For example, these studies

instructed participants to perform irrelevant, decoy tasks of

passively listening to auditory sequences (Bianco et al., 2020),

or to detect a target that was irrelevant to the statistical

structure (Alamia et al., 2019; Milne et al., 2021; Zhao et al.,

2019). Thanks to these efforts, a positive link between infor-

mation content and spontaneous PDRs has been established.

However, several aspects of this link are still unclear. First,

it is not fully understood how variations in information con-

tentdbe they decreases or increasesdaffect the full-time

course of PDRs. Indeed, recent studies suggest that it might

be beneficial to investigate the full time-series of PDRs instead

of focusing only on scalar values (like mean or maximum

pupil size; Denison et al., 2020; Hershman et al., 2023; Fink

et al., 2024). Such an approach would make it possible to

determine the temporal characterizations of effects and

outline temporal dynamics of cognitive and perceptual pro-

cessing (Hershman et al., 2023) and thereby clarify the rela-

tionship between pupil dynamics and information

contentdfor instance, the speed with which the pupil re-

sponds (Cai et al., 2023; de Gee et al., 2014; Denison et al., 2020;

Hoeks& Levelt, 1993; Wierda et al., 2012). We also do not know

whether performance on an irrelevant task influences the link

between information content and PDRs, and if so with what

effect.

1.4. Purpose of the present study

We measured PDRs in response to the violation and emer-

gence of regular patterns in fast-paced auditory sequences

(Zhao et al., 2019). Because we were interested in the

spontaneous processing of statistical regularities, no task

was associated with transitions between patterns. Instead,

participants were instructed to perform the apparently

irrelevant task of finding gaps in those patterns, just to

ensure they maintained their attention on the auditory

sequences.

Zhao et al. (2019) investigated transitions between regular

and random patterns. We included a new condition with

transitions from one regular pattern to another regular

pattern. This new condition allowed us to verify that the

resulting PDRs are not only due to the saliency of a new

random pattern after a regular pattern per se, but instead are
due to the violation of regularities. Both conditions have been

shown to evoke a mismatch-negativity (MMN) in electroen-

cephalography (EEG; Southwell, 2019), suggesting that the

brain treats these transitions as unexpected events.

We also estimated the information content resulting from

the violation and emergence of regularities. We did this using

a variable-order Markov model called Information Dynamics

ofMusic (IDYOM, Pearce, 2005; 2018). Violation and emergence

of regularities (including our new regulareregular condition)

led to different degrees of information content, suggesting

different requirements for the computations that must be

carried out in the brain to build models and make predictions

(Dayan & Yu, 2003; Milne et al., 2021; Yu & Dayan, 2005; Zhao

et al., 2019). Having observed that PDRs fluctuate over time

with changes in information content, we modelled their re-

lationships on a trial-by-trial basis using a convolutional

approach based on pupil response functions (PRFs; Cai et al.,

2023; de Gee et al., 2014; Denison et al., 2020; Hoeks & Levelt,

1993; Wierda et al., 2012).

Finally, although previous results showed that the PDRs

arise spontaneously (Zhao et al., 2019), they did not quantify

the effect of the irrelevant task on the link between informa-

tion content and PDRs. We therefore assessed the extent to

which pupil responses are spontaneous biomarkers of

changes in predictive relationships in environmental

statistics.
2. Material and methods

We report how we determined our sample size, all data ex-

clusions, all inclusion/exclusion criteria, whether inclusion/

exclusion criteria were established prior to data analysis, all

manipulations, and allmeasures in the study. The experiment

and associated PDRs analysis for the replication were pre-

registered at AsPredicted (https://aspredicted.org/GSK_NHJ).

Analyses linking information content and PDRs were not

preregistered but were included at the suggestion of re-

viewers. The raw data, processed data, and analysis scripts

were shared as an Open Science Framework project (https://

osf.io/KPW57).

2.1. Participants

Twenty-nine participants attended the study. As a result of

the exclusion criteria based on the gap detection task specified

in the preregistration, no data was collected for three partic-

ipants whose accuracies after practice remained below 80%.

However, due to the poor general performance of participants

in finding gaps, we later deviated from the preregistration,

letting all participants attend the main experiment and

excluding outliers before the main analysis. Four participants

with hit rates three standard deviations below or false alarm

rates three standard deviations above the group mean were

excluded, resulting in 22 participants (8 female, Mage: 24.43,

SDage: 3.28). Including the four excluded participants in the

analysis did not change our results.

Zhao et al. (2019) reported Cohen’s dz of .8 in a within-

subjects design with a one-sided t-test for the effect on PDRs

and determined that N ¼ 12 yields adequate power (1db ¼ .8)

https://aspredicted.org/GSK_NHJ
https://osf.io/KPW57
https://osf.io/KPW57
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at a ¼ .05. With the same effect size, we found that N ¼ 20

increases the power to .964 (The current power of the study

with N ¼ 22 is 1- b ¼ .976).

The participants were mostly university students and

compensatedwith either course credit or 10 EUR per hour. The

ethics committee of the EberhardKarls University of Tübingen

approved the study (Date of approval: 17.06.2020).

2.2. Materials

We used the same auditory stimuli as Zhao et al. (2019). Fig. 1

shows an example set of stimuli used in the experiment. All

auditory stimuli were generated by concatenating 50 msec

tones of various frequencies selected from a frequency pool

consisting of 20 log-spaced values between 222 and 2000 Hz

(namely, 222, 250, 280, 315, 354, 397, 445, 500, 561, 630, 707, 793,

890, 1000, 1122, 1259, 1414, 1587, 1781, 2000 Hz).

Ten tones selected from the frequency pool (with replace-

ment) were used to create regularities (REG10). Similarly, ten

tones selected from the frequency pool (with replacement)

were shuffled to generate random patterns (RAND10). These
Fig. 1e Example stimuli. Note. Typical stimulus sequences

used in the experiment. Each yellow bar represents a tone

(each lasting 50 msec). RAND10: 10 tones were randomly

selected from a pool of 20 tones and presented in a random

order. REG10: 10 tones were randomly selected from the

same pool and then these 10 tones were presented

repeatedly in the same order. These conditions served as

control conditions as they did not include a statistical

change. RAND10-REG10: First the RAND10 pattern was

presented, then there was a transition to a REG10 pattern.

REG10-RAND10: Transition from REG10 to RAND10.

REG10a-REG10b: Transition from one REG10 pattern to

another REG10 pattern. Transitions between patterns are

marked by a white vertical line (transition times were

jittered in the experiment but are shown here as

overlapping, for simplicity).
conditions, which did not involve a change in statistical

structure, served as control conditions.

For trials involving a transition, ten tones were selected

from the frequency pool for the first pattern, and the same

tones were used to generate the second pattern to avoid

introducing novel tones after the transition. There were three

types of trials with transitions: (a) RAND10-REG10 involved a

transition from RAND10 to REG10 and was used to investigate

the effect of the emergence of regularity. As discussed earlier,

this type of transition allows gradual model update and, in

this case, a reduction of information content. (b) REG10-

RAND10 involved a transition from REG10 to RAND10 and

was used to investigate the effect of the violation of regularity.

(c) REG10a-REG10b involved a transition from one REG10

pattern to another REG10 pattern and thereby also constituted

a violation of regularity, and an increase, and then a decrease

in information content. If PDRs are sensitive to unexpected

uncertainties and are evoked due to model reset, transitions

in (b) and (c) should elicit PDRs but not in (a).

Each participant observed 192 randomly generated trials

corresponding to 48 RAND10, 48 REG10, 48 RAND10-REG10, 24

REG10-RAND10, and 24 REG10a-REG10b trials. The length of

the auditory sequences varied randomly between 6 and 8 sec,

at a granularity of 500 msec. Transitions occurred between 3

and 4 sec after the sequence onset. Specifically, REG10s con-

sisted of 12e16 repetitions of the same auditory sequence

(120e160 tones in total), and REG10s in REG10-RAND10 and

REG10a-REG10b were violated after 6e8 repetitions (60e80

tones in total) presented. Inter-trial intervals (ITIs) were 5 sec.

A gap detection task was provided to keep participants'
attention and lead them to engage with the auditory stimuli

(Milne et al., 2021; Zhao et al., 2019). The gap detection task

was irrelevant to the transitions. It required participants to

detect possible gaps that could occur in 20% of trials and at

any time between 250 msec post-onset and 750 msec pre-

offset. Each condition involved the same number of gaps,

but their durations were determined to be threemissing tones

(150msec) for RAND and twomissing tones (100msec) for REG

to equate the difficulty of the gap detection task (in line with

Zhao et al., 2019). Trials involving a gap or receiving a false

alarm response were removed from the analysis to avoid any

effect of the gap or the motor response.

The auditory stimuli were presented by a headphone

(Beyerdynamic DT-770 M 80 Ohm) connected to the monitor

(ViewPixx/3D System, screen diagonal: 24-inch/60.96 cm).

Participantswere providedwith a RESPONSEPixx connected to

the monitor and could respond with any of the five buttons

(according to their preference). The participants' right eyes

were tracked using an EyeLink 1000 system (SR Research) at a

1000 Hz sampling rate.

2.3. Procedure

Participants sat ina luminance-controlled, dimly lit room(5 cd/

m2) to ensure that non-luminance-evoked pupil dilation could

be observed. They were instructed to place their chin on a

chinrest 50 cm away from the monitor to maintain a fixed

distance between the eye and themonitor. Theywere asked to

fixate on a white cross (13.2 cd/m2) in the centre of a grey

background, which remained constant throughout the

https://doi.org/10.1016/j.cortex.2024.10.023
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experiment. The eye trackerwas positioned below themonitor

and continuously tracked the gaze position and the right eye.

Soundswere presented diotically at a comfortable intensity

level the participants selected before the experiment. Partici-

pants were shown several examples of auditory sequences,

including a gap, and a short practice session was carried out.

They were instructed to monitor the sequences for gaps and

respondbypressingabutton.Theendof trialswas indicatedby

a fixation cross changing to green for 400 msec. The main

experiment involved four blocks, each taking approximately

9 min with 3-min optional breaks. Participants observed trials

coming from different conditions within the same block. A

calibrationphasewasappliedbeforeeachblock to calibrate the

gaze locations detected by the eye tracker.

2.4. Analysis

Our preprocessing pipeline closely paralleled that of Zhao

et al. (2019) but was implemented using different program-

ming languages and software packages. We note minor de-

viations throughout the analyses section.

2.4.1. Analysis of gap detection performances
Participants' performance in the gap detection task was

transformed into hit and false alarm rates. Hit and false alarm

rates were then arcsine transformed for the subsequent

parametric and Bayesian statistical analyses.

2.4.2. Analysis of pupil size values
The area of the pupil of the right eye wasmeasured during the

experiment, and the data were converted to diameter for

further analysis (pupil area led to the same results). The pupil

size data were analysed at 1000 Hz.

Participants' gaze directions were analysed to avoid any

effect of gaze on pupil size by checking deviations of more

than three standard deviations from the group mean. By this

criterion, we found that none of the participants' mean gaze

locations exceeded the group mean more than this amount.

As noted, trials involving a gap or receiving a false alarm

response were removed from the analysis to avoid any effect

of the gap or themotor response. The pupil sizesmeasured for

RAND10-REG10, REG10-RAND10, and REG10a-REG10b condi-

tions were separated into epochs according to the transition

time; namely, the data were segmented by considering 1 sec

before and 3 sec after transitions to investigate their effects.

For the control conditions REG10 and RAND10, which lack a

transition, dummy transition times were randomly selected

between 3 and 4 sec. The segmented data were analysed to

investigate the effect of transitions on PDRs. Considering that

the first ten tones in REG10 were indistinguishable from

random sequences of tones, transitions from RAND10 to

REG10 were shifted one repetition (10 tones, 500 msec).

Complete or partial blinks in the segmented pupil size data

were reconstructed by piecewise cubic interpolation. Trials

having 50% missing data because of blinking or involving

missing data after interpolation were removed from the ana-

lyses (z1.15% of all trials). After blink construction, the data

were smoothed with a 150 msec Hanning window.

To be able to compare the conditions, the data were z-

scored by computing each participant’s mean and standard
deviation for each block separately across all conditions. To

assess the effect of transitions on pupil size, baselines were

determined for each trial as themean of a 1-sec interval before

the transitions.

Following the preregistration associated with the replica-

tion of Zhao et al. (2019), we calculated separate linear re-

gressions for each participant, condition, and timepoint (each

timepoint represents 1 msec) to predict pupil size from base-

line, with the residuals from these regressions being used for

estimating the effect of transitions. This method replicated

the target study closely (Figure S2); however, it brought minor

timing and magnitude differences between REG10-RAND10

and REG10a-REG10b in response to transitions (see Figure S3

for a comparison). Upon observing that subtracting baselines

led to more consistent results, we used this method in our

analyses.

We conducted a series of two-tailed t-tests to compare

transition and control (no transition) conditions after down-

sampling the data to 20 Hz. Bayes factors (BF10) were calcu-

lated from t values with Jeffreys, Zellner, and Siow (JZS) priors

using the Pingouin package in Python (Vallat, 2018). Unless

stated otherwise, the transformation was conducted with a

Cauchy scale factor of .707. As a complementary frequentist

analysis, we detected significant clusters (p < .05) by a non-

parametric cluster-based permutation procedure (5000 itera-

tions with a threshold of p < .05) using the MNE package in

Python (Gramfort et al., 2013; Larson et al., 2023; Maris &

Oostenveld, 2007). To counteract the multiple comparison

problem, we also utilized orthogonal Chebyshev polynomials

(the first kind) to model the time course of PDRs (Section S7).

Orthogonal polynomials have previously been used in pupill-

ometry research to investigate differences in linear and non-

linear trends in pupil size data (Geller et al., 2019; Kuchinsky

et al., 2013).

All these statistical analyses revealed consistent results.

For simplicity, we therefore show only BF10 in the figures (as

coloured horizontal lines). The other statistical tests based

on the non-parametric cluster-based permutation procedure

and orthogonal polynomials can be found in Figures S3 and

S7.

To estimate the possible baseline differences between

regular and random patterns (i.e., REG10 versus RAND10),

RAND10 and REG10 conditions were segmented by consid-

ering 1 sec before and 6 sec after sound onset. Then, similar

analysis steps as above were applied to REG10 and RAND10

separately. For correction of these signals, the mean of the 1-

sec interval before the sound onset was computed and sub-

tracted from each trial to investigate the effect of patterns.

Finally, as an exploratory analysis, we asked for individual

participants whether violations of regularities and whether

performance in the gap-detection task were associated with

any change in baseline and mean pupil responses. Baseline

pupil responsesweredetermined for each trial as themeanof a

1-sec interval before transitions. We then determined mean

pupil responses for each trial by averaging the changes in

baseline corrected pupil diameter during the .6 sece3 sec in-

terval following a transition, a time frame where mean PDRs

were visible and BF10 > 1 for both REG10-RAND10 and REG10a-

REG10b. We further investigated their relationships with per-

formance variables (RTs and d’ of the gap detection task) to

https://doi.org/10.1016/j.cortex.2024.10.023
https://doi.org/10.1016/j.cortex.2024.10.023
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assess the impact of the irrelevant task performance on pupil

responses.

2.4.3. Pupil event rate analysis
To determine the effect of transitions on pupil responses, as

an exploratory analysis, we used a method proposed by Joshi

et al. (2016) and applied by Zhao et al. (2019). Thismethod finds

pupil events by focusing on either positive (i.e., pupil dilation)

or negative (i.e., pupil constriction) changes in pupil size in-

dependent of the magnitude. Unlike averaging, which em-

phasises macro-events and slowly varying pupil responses,

this method detects micro-events such asmicro-dilations and

micro-constrictions.

The slope of the change on each trial was computed by a

set of linear regression algorithms trained sequentially on a

150 msec window to recover the pupil’s behaviour at specific

time points, using time as a predictor of pupil size. The loca-

tions of micro-dilations were defined as local maxima;

conversely, those of micro-constrictions were defined as local

minima between two selected sequential zero-crossings.

Sequential zero-crossings were selected based on

exceeding two different thresholds on their separation in time

(Joshi et al., 2016). Eventswere determined according to 75 and

300msec thresholds for each trial in the average PDRs analysis

(see Fig. 2), and event rates were computed using a 500 msec

sliding window for each participant for each condition (based

on the mean of participants). Finally, we performed the same

statistical procedure we employed for comparing PDRs to

compare event rates across conditions.

2.4.4. Information content analysis
The IDYOM model (Pearce, 2005, 2018) was used to evaluate

changes in information content (to estimate model update

and reset). This fits a variable-order Markov chain with mul-

tiple viewpoints (i.e., features). Based on previous observa-

tions, it calculates information-theoretic values for each tone

within a sequence (e.g., information content and entropy).

This model was used in previous research to estimate
Fig. 2e Micro-dilations and constrictions. Note. A sample

trial that involves micro-dilations and constrictions

detected by the algorithm. (A) Events determined according

to a 75 msec threshold and (B) 300 msec threshold. The red

line represents dilations, and the red dot shows where

dilation events are temporally located, whereas the blue

line and dot represent constriction events.
information-theoretic values within auditory sequences

(Barascud et al., 2016; Bianco et al., 2020; Milne et al., 2021;

Zhao et al., 2019).

We applied this model to the auditory sequences that were

presented to participants during the experiment. Since we

were interested in statistical relationships between tones, we

used “pitch” as a viewpoint (“cpitch” in the IDYOM model

terminology). To capture the long-term effects of the entire

experimental session and short-term effects of statistical

structure (mimicking perception and learning), we used the

combination of short (STM) and long-term memory (LTM).

This parameter corresponds to “both” in the IDYOM model

terminology.

After receiving information content values from the

IDYOM model for each trial, we subtracted the information

content of the previous point from the corresponding current

point; thereby calculating the change in information content.

We assumed that the information content in ITIs was 0, as no

stimuli were displayed in these ranges except for a constant

fixation cross. We down-sampled PDRs to 20 Hz, correspond-

ing to the sampling rate of information content.

We developed two pupil models using information content

changes: the pupil size and the pupil event model. The pupil

size model predicts the magnitude of pupil responses within

trials from information content changes. In this way, it ap-

proximates continuous pupil behaviour. By contrast, the pupil

event model models micro-dilation and micro-constriction

rates (see 2.4.3 Pupil Event Rate Analysis) using the accom-

panying information content changes whilst ignoring slow

pupil responses. These two models complement each other,

since the number of pupil events, rather than the magnitude

of PDRs, might be associated with changes in information

content if, for example, the number, but not the size, ofmicro-

dilations was affected.

We focused our modelling on the transitions between

patterns (i.e., REG10a-REG10b, REG10-RAND10, RAND10-

REG10) since these are expected to offer the strongest ef-

fects. Furthermore, the violation of regularities (REG10a-

REG10b and REG10-RAND10) and the emergence of regularities

(RAND10-REG10) occurred on similar numbers of trials in the

dataset. The models were required to fit pupil size and micro-

event rates for the entire auditory sequence across whole

trials. We describe the size and event models in turn.

Pupil size model. The pupil response to a particular event

can be modelled by a convolutional approach based on a

linear model (Cai et al., 2023; de Gee et al., 2014; Denison et al.,

2020; Hoeks & Levelt, 1993; Wierda et al., 2012). Following this

approach, we treat information content change as an internal

event that changes the pupil response in a way that is

described by a pupil response function (PRF). The predicted

overall dynamics of the pupil then arise from a convolution of

the information content change signal and the PRF.

This approach makes several assumptions as to how the

pupil responds to events. In the context of our model, these

include that the same information content change leads to the

same PDRs, the relationship between information content

change and PDRs does not vary over time, and, in the simplest

case, the information content change is linearly related to

PDRs. These properties have been shown to capture pupil re-

sponses to isolated events such as simple visual and auditory
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stimuli (Hoeks & Levelt, 1993) and have been utilized to model

PDRs in previous studies to investigate attention and decision-

making (Cai et al., 2023; de Gee et al., 2014; Hoeks & Levelt,

1993; Wierda et al., 2012) even when relevant events are

close in time (Denison et al., 2020).

The PRF has been specified in the literature (Hoeks& Levelt,

1993) as

hðtÞ ¼ tne�nt=tmax (1)

In this equation, h is the pupil size, t is the time in sec, tmax

(also in sec) determines the peak time of the PRF, and n con-

trols the width of the PRF (see Fig. 3). Hoeks and Levelt (1993)

specified parameters of this PRF (n ¼ 10.1 and tmax ¼ .93 sec)

and pointed out that n is quite variable between participants

(n ¼ 10.1 ± 4.1 s). We will call this the literature-based PRF.

We fitted the actual pupil responses recorded in the

experiment with a linear model (in our case, a linear-mixed

model for each participant) based on the convolved signal.

We discuss the independent variables in the model and the

fitting procedure in detail in the following sections.

Pupil size model types. We built five models with varying

complexities which make different assumptions as to how

information content changes determine PDRs.

(a) The first model converts information content changes

to pupil responses using convolutionwith the literature-based

PRF (IClit in short). (b) The secondmodel is an extension of the

firstmodel that converts information content changes to pupil

responses by a unique PRF for each participant (ICfit in short).

These PRFs used the same functional form as in Equation (1),

but with individual values for n and tmax which were found by

an optimization procedure.

Models (a) and (b) specify identical sensitivities of pupil

responses to positive and negative information content

changes. The remaining models allow these to differ based on

separating information content changes into positive and

negative channels, symbolised as IC±. (c) The third model

convolves these channels with the literature-based PRF

(IC ± lit in short). (d) The fourth model convolves these

channels by a unique PRF for each participant (IC ± fit in

short). (e) The fifth, and themost complexmodel, allows these

channels to have different PRFs (IC ± fit± in short).
Fig. 3e Pupil Response Function Examples. Note. An example se

for different peak responses (tmax). (B) PRFs with the parameter
By comparing these models, we estimated any differential

effects of positive and negative information content changes

(IC versus IC±) on PDRs, individual variabilities within PRFs

(IC ± lit versus IC ± fit), and possible differences between PRFs

across channels (IC ± fit versus IC ± fit±).
The IDYOM model estimates information content within

sound sequences. However, it may not accurately capture the

predictability of trial onset, as it does not account for partici-

pants' predictions during the ITI. To address this, we added a

parameter to themodels specified so far to estimate the effect

of trial onset (called ICstart). We assume that the trial onset is

always surprising (i.e., presents only positive information

content) and has an effect that can be captured by the same

PRF used for information contents of sound sequences. We

appended an asterisk (*) to indicate the involvement of this

parameter; for example, IClit* corresponds to the model that

estimates the effect of the trial onset with this additional

parameter and then convolves the information content

changes with a literature-based PRF.

Pupil size model fitting.We used the function in Equation (1)

for all PRFs. We used literature-based values for (n ¼ 10.1 and

tmax ¼ .93 sec) for IClit and IC ± lit. For the other models, we

used a Bayesian optimization procedure (using scikit-

optimize in Python; Section S10) to fit values for individual

subjects. We conducted a search between 1, 20 for n,

.2 sece2 sec for tmax, and from 0 to 20 bits for ICstart

By convolving information content changes with the

resulting basis PRFs, we computed predictive signals. Thenwe

mapped these predictive signals to actual pupil responses

using a linear-mixedmodel (using the statsmodels package in

Python; Seabold & Perktold, 2010) to find the best fitting pa-

rameters for each participant by determining themaximumof

average R2 across trials.

IClit and ICfit (and the variants with an *) models assume

that positive and negative information content changes affect

pupil responses to the same degree (but in opposite directions,

given positive sensitivity, the convolution of a positive signal

with a basis PRF results in positive values, i.e., pupil dilations,

whereas for a negative signal, the result is negative values, i.e.,

pupil constrictions). They include one predictive signal for

information content changes that is convolved with a basis
t of PRFs (Pupil Response Functions). (A) PRFs with n ¼ 10.1

tmax ¼ .93 sec for different n values.
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Fig. 4e Hit and false alarm rates of participants in the gap

detection task. Note. Gap detection performance of

participants in the current study. Single points correspond

to the performance of individual participants. Error bars

indicate bootstrapped 95% CIs.
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PRF (symbolised as IC) with a random effect across trials. The

linear-mixed model used for them had the following form (in

Wilkinson notation; Wilkinson & Rogers, 1973):

PupilSize ¼ ICþ PupilBaselineþ PupilDriftþ BlockOrder

þð1þ ICjTrialsÞ (2)

We included PupilBaseline, the mean pupil size of a 1-sec

interval before the auditory onset, as a predictor to investi-

gate its effect on pupil responses. Additionally, we included

time in a trial to estimate spontaneous negative or positive

linear changes in pupil behaviour within a trial; this regressor

is called PupilDrift. We also included the order of experimental

blocks (i.e., BlockOrder) to assess the potential impact of time

throughout the experiment.

IC ± lit, IC ± fit, and IC ± fit± (and the variants with an *)

allow positive and negative information content changes to

affect pupil responses to different degrees. They include a

predictive signal for each channel estimated by a convolution

operation with a basis PRF (symbolised as ICþ and IC-) with a

random effect across trials. The model used for them had the

following form (± within terms are given as a subscript in the

formula for visual clarity):

PupilSize ¼ ICþ þ IC� þ PupilBaselineþ PupilDrift

þBlockOrderþ ð1þ ICþ þ IC�jTrialsÞ
(3)

Models predicted the shape and magnitude of baseline

corrected PDRs across entire trials (i.e., both before and

after the transition) based on information content

changes. We then segmented and corrected the model

predictions to visualise sustained and transition-evoked

PDRs (like actual PDRs, see 2.4.2 Analysis of Pupil Size

Values). We compared candidate models by their average

Bayesian Information Criterion (BIC) and average R2 scores

across participants.

Pupil event model. In a separate but complementary

analysis, we modelled the rate of micro-dilations and con-

strictions in response to information content changes. We

again down-sampled pupil size, computed slopes (using

np.gradient fromNumpy in Python), and detected the location

of pupil events. Since 75 and 300 msec result in similar rate

patterns (3.5 Pupil Event Rate Analysis), we selected the

300 msec threshold for modelling.

Micro-events within a sequence might have many de-

terminants: time-related factors, such as the duration of the

trial or experiment; response-related factors, such as whether

a pupil response occurred before, and stimuli history-related

factors, whether the pupil has already responded to changes

in information content in the past. These factors must be

accounted for to establish the link between information con-

tent changes and pupil events.

To account for these factors, we used a generalized linear

model (using the statsmodels package in Python; Seabold &

Perktold, 2010). A Poisson regression model is the usual

choice for rate models; however, in our data, the occurrences

of pupil events were sparse (see Section S10). Upon the

observation that the Poisson model determined unusual

rates due to the excessive number of zeros, we used zero-

inflated Poisson regression (Lambert, 1992). Similarly, in the

data, the number of events per bin (each 50 msec) never

exceeded 1 due to the down-sampling operation. Thus, the
predictions from the Poisson regression can be interpreted as

probabilities.

The model had two components with separate logistic link

functions: a logistic model for 0s (i.e., the inflation) and a

Poisson regression model for event counts (i.e., Poisson

model). Apart from the random effect of information content

changes, we included the same regressors in this model as

those used in the pupil size model. (a) To estimate the

temporally varying effect of information content changes, we

convolved themwith PRFs. To identifymodel components, we

applied the same model comparison procedure used for the

pupil sizemodel.We included (b) pupil baselines, (c) pupil drift

to estimate spontaneous changes in event rate within a trial,

and (d) block order to account for time-related effects.

We fit two models: one for identifying the rate of micro-

dilations and one for micro-constrictions. To specify model

components, we ran an optimization procedure (see Section

S10) and found parameter sets that minimized the negative

log likelihood of the model for each participant. We did not

use R2 as it is not a proper metric for count models.

For both pupil size and event models, we used the fixed-

effect coefficients to determine the link between pupil

behaviour and the factors of interest (information content,

intercept, pupil baseline, pupil drift, and block order). T values

were calculated by comparing participant-specific coefficients

to 0, and BF10 were calculated as a measure of evidence.

3. Results

3.1. Behavioural performance in gap detection task

Participants reached similar performances on gap detection

during RAND10 (with the longer gaps) and REG10 (Fig. 4; see

Section S1 for a comparisonwith Zhao et al., 2019). Paired two-

sided t-tests over hit and false alarm rates did not reveal a
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Fig. 5e Pupil dilation responses in the experiment. Note. Pupil size over time. (A) PDRs were induced by violation of

regularities. This could either be a transition from a regular pattern to a random pattern (REG10-RAND10), or from one

regular pattern to another regular pattern (REG10a-REG10b). In contrast, the transition from a random to a regular pattern

(RAND10-REG10) did not induce PDRsdsimilar to the control conditions without transition (REG10, RAND10). Pupil size is

given as normalized change from baseline (which extended from ¡1 sec to 0 sec before the transition). Coloured horizontal

lines indicate Bayes factors for the difference between each transition condition and the corresponding no-transition

control condition, with the varying thickness indicating different evidence levels (BF10 > 1, 3, and 10). (B) Average

normalized pupil size over time in no-transition control conditions. These conditions led to similar pupil size changes (pupil

sizes extended from¡1 sec to 0 sec before the trial onset were used for baseline correction). This finding suggests that PDRs

to the violation of regularities (REG10-RAND10 and REG10a-REG10b) but not to the emergence of regularities (RAND10-

REG10) are not a side effect of baseline pupil size differences between RAND10 and REG10. Shaded areas indicate the

between-participant SEMs.
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significant difference [Hit rates: p ¼ .31, 95% CI ¼ (�.1, .3),

dz ¼ .31; False alarm rates: p ¼ .2, 95% CI ¼ (�.04, .01), dz ¼ .41].

Bayes factor analyses moderately favoured the null hypothe-

sis (Hit rates: BF10 ¼ .361; False alarm rates: BF10 ¼ .483).

3.2. Analysis of PDRs

We statistically compared transition conditions with corre-

sponding no-transition control conditions. The emergence of

auditory regularities in RAND10-REG10 trials did not induce

PDRs. By contrast, the violation of auditory regularities in

REG10-RAND10 trials did elicit PDRs (Fig. 5A). We observed

that the pupil responds to regularity violations at around

620 msec. Specifically, BF10 > 1 is observed at 620 msec

(BF10 ¼ 1.32) and BF10 > 3 at 680 msec (BF10 ¼ 3.58). After that,

the pupil diameter increases steeply until 1500 msec, with a

magnitude of approximately .25, gradually dropping.

Similarly, REG10a-REG10b, the violation of auditory regu-

larities and the emergence of new regularities, elicited PDRs

(Fig. 5A). Similar to REG10-RAND10, PDRs in REG10a-REG10b

deviated from REG10, the baseline. BF10 value exceeds 1 at

620 msec (BF10 ¼ 1.25) and 3 at 680 msec (BF10 ¼ 3.24).

Both Bayesian and frequentist statistical tests indicate that

the evidence for differing pupil sizes gradually decreases for

REG10a-REG10b but not for REG10-RAND10. This trend is

visible at 2750 msec (REG10a-REG10b: BF10 ¼ 1.30, p ¼ .128;

REG10-RAND10: BF10¼ 3.74, p¼ .032) and continues by the end

of the trial (REG10a-REG10b: BF10 ¼ .83, p ¼ .247; REG10-

RAND10: BF10 ¼ 3.58, p ¼ .034). The direct comparison did

not show a statistically significant effect (mean statistical
values 2e3 sec post-transition: BF10 ¼ .43, p¼ .22, dz ¼ .35). We

will elaborate on this point in the discussion.

Regularity violations (REG10-RAND10, REG10a-REG10b) but

not their emergence (RAND10-REG10) evoked PDRs (see Sec-

tion 2 for a comparison with Zhao et al., 2019). Additional

statistical analyses using significant clusters (p < .05) and

orthogonal polynomials (see Figures S3 and S7) further

confirmed these findings.

To create the stimuli for the REG10a-REG10b condition, we

randomly sampled REG10a and REG10b patterns. This random

sampling operation introduced varying degrees of dissimi-

larities between these patterns. As the dissimilarity between

the two patterns increases, the magnitude of PDR could also

increase because the degree of violations will be greater. As an

exploratory analysis, we quantified the dissimilarity between

REG10a and REG10b using edit distance methods (Navarro,

2001; Wagner & Fischer, 1974; Yu et al., 2016). We observed

using linear-mixed effect models that the degree of dissimi-

larity between REG10a and REG10b could positively influence

the magnitudes of PDRs (b z .05, R2 z .37) but had little or no

impact on their temporal properties (see Section S8).

3.3. Analysis of sustained pupil sizes

To examine whether pattern type affects sustained pupil

sizes, we compared pupil sizes in REG10 and RAND10. Fig. 5B

shows no considerable difference between REG10 and

RAND10, suggesting that PDRs to the violation of regularities

(REG10-RAND10 and REG10a-REG10b) but not to the emer-

gence of regularities (RAND10-REG10) are not a side effect of

https://doi.org/10.1016/j.cortex.2024.10.023
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Fig. 6e PDRs and gap detection performance. Note. Mean pupil dilation responses (PDRs) and gap detection performance. (A)

Represents the mean pupil responses of participants, averaged over the time range of .6e3 sec and sorted according to

values shown for REG10-RAND10. Most participants' pupil size increased due to the violation of regularities. On the other

hand, the emergence of regularities led to a reduction in pupil size. (B) Shows the correlation betweenmean pupil responses

in regularity violation conditions (REG10-RAND10, REG10a-REG10b). Pupil sizes following two types of regularity violations

showed a high and reliable correlation. The data were split according to the median sensitivity to examine if performance

(as a proxy of the attentional state of participants) affects this relationship. Participants with high d’ seemed to show a

slightly low correlation between regularity violation conditions. This finding suggests that participants' attentional state
does not impact this relationship.
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baseline pupil size differences between RAND10 and REG10

(See Figure S11 for the sustained pupil responses prior to

baseline correction2).

3.4. Effect of gap detection performance on pupil size

Most participants' pupil sizes increased due to regularity vio-

lations. Specifically, as a descriptive statistic, 18 out of 22

participants in the REG10a-REG10b and 17 in the REG10-

RAND10 conditions demonstrated a pupil size increase

(Fig. 6A). Conversely, although the emergence of regularities

predominantly led to a reduction in pupil size (N ¼ 16), the

magnitude of this decrease was smaller than the increase in

pupil size observed in response to regularity violations.

Pupil sizes following two types of regularity violations

showed a high and reliable correlation [r ¼ .62, BF10 ¼ 21.81,

p ¼ .002, 95% CI ¼ (.27, .82); Fig. 6B]. To investigate whether

participants' gap detection performance (as a proxy of their

attentional state) affects this relationship, we controlled per-

formance variables (d’, hit rate, and false alarm rates) by

partial correlation. We observed only a minor change [r ¼ .64,

BF10 ¼ 29, p ¼ .002, 95% CI ¼ (.27, .82)]. Further, to investigate if

this correlation is affected by participants' performances, we

split participants into two groups based on the median
2 As recommended by an anonymous reviewer.
sensitivity (d’ ¼ 3.33) and computed correlations separately:

the results were similar across groups [low d’: r ¼ .75,

BF10 ¼ 8.44, p ¼ .007, 95% CI ¼ (.27, .93); high d': r ¼ .6,

BF10 ¼ 2.14, p ¼ .048, 95% CI ¼ (.01, .88); difference: z ¼ �.54,

p ¼ .586, BF10 ¼ .33; Fig. 6B].

Participants' performance, as estimated by d’, was not

associated with pupil size [Pupil baselines: r ¼ .16, BF10 ¼ .330,

p ¼ .49, 95% CI ¼ (�.29, .54), mean PDRs: r ¼ .09, BF10 ¼ .287,

p ¼ .678, 95% CI ¼ (�.34, .50)]. Hit and false positive rates led to

similar results. We extended these results with RTs of par-

ticipants; results were not strong (pupil baselines: r ¼ .33,

BF10 ¼ .75, p ¼ .135, 95% CI ¼ [�.11, .66]; PDRs: r ¼ �.3,

BF10 ¼ .64, p ¼ .17, 95% CI ¼ [�.64, .14]). Overall, these results

suggest that the irrelevant task performance did not affect

PDRs but may affect pupil baselines (RTs but not d').

3.5. Pupil event rate analysis

To determine the effect of transitions between patterns on

pupil responses, we determined micro-dilations and micro-

constriction events and computed their rates over time.

Pupil event rate analysis conducted using 75 and 300 msec

thresholds for the minimum gaps between successive de-

tections yielded comparable results with the literature (see

Section S4 for a comparison with Zhao et al., 2019 and Section

S5 for number and size of these events). Fig. 7A shows that

https://doi.org/10.1016/j.cortex.2024.10.023
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Fig. 7e Pupil event rate analyses. Note. Pupil dilation and constriction rates computed using a running average with a

500msec window. (A) Dilation rates for REG10-RAND10 and REG10a-REG10b increased due to transitions. On the other hand,

the transition from RAND10 to REG10 did not lead to an increase in pupil dilation rate. (B) Pupil constriction rates mirrored

dilation rates. Coloured horizontal lines indicate regions where BF10 > 1, 3, and 10 (represented by varying thickness levels)

between each transition condition and the no-transition control. These lines are positioned above and below the graphs

corresponding to the 75msec and 300msec thresholds, respectively. Shaded areas represent the between-participant SEMs.
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dilation rates for REG10-RAND10 and REG10a-REG10b became

apparent after the transition. The transition from RAND10 to

REG10 did not lead to an increase in pupil dilation rate. Fig. 7A

and B shows that pupil constriction rates mirrored dilation

rates.

Our results diverged from the reported baseline event

rates in the literature (Zhao et al., 2019; see Section S4).

After reanalysing their publicly available data, we deter-

mined that the event rates should be approximately .75 Hz

and .35 Hz for 75 msec and 300 msec, respectively, and not

3 Hz and 1.4 Hz. S. Zhao generously confirmed these

revised estimates (S. Zhao, personal communication, June

12, 2023).

3.6. Information content analysis

So far, we have shown that transitions between regular pat-

terns affect pupil responses. While the violations of regular-

ities predominantly evoke PDRs (Figs. 5 and 6), their

emergence may lead to small pupil constrictions (Fig. 6). We

now describe our results on the relationship between infor-

mation content changes and PDRs.

We evaluated the predictability of toneswithin a trial using

the IDYOM model, serving as a framework for estimating the

relationship between information content changes and PDRs.

In the following sections, we examine: (a) information content

changes due to transitions, (b) the results of our models

relating these changes to pupil size and micro-events, and (c)

the relationship between irrelevant task performance and

model parameters.
3.6.1. Effects of transitions on information content
The IDYOM model suggests that the statistical conditions

for detecting the violation (REG10-RAND10, REG10a-REG10b)

and the immediate emergence (RAND10-REG10) of regular-

ities differed in response to these transitions. We observed

a gradual reduction in information content for RAND10-

REG10 just after the transition (Fig. 8A), thereby indicating

the opportunity for a slow and progressive model update.

By contrast, IDYOM reported an abrupt increase in infor-

mation content for REG10-RAND10 and REG10a-REG10b,

indicating unexpected uncertainties that may lead to a

model reset.

The subsequent statistical characteristics of REG10-

RAND10 and REG10a-REG10b then gradually differed. The

average information content for REG10a-REG10b reduced

after approximately 15 tones (750 msec), reaching a base-

line after 20 tones (1000 msec), suggesting that the IDYOM

model had learnt the new regular patterns (REG10b). On the

other hand, the average information content for REG10-

RAND10 was stable until the end of the epoch, consistent

with the sustained expected uncertainty in RAND10

patterns.

Information content increases after the transition covaried

with PDRs (compare Fig. 5A with Fig. 8A). However, sustained

and elevated information content changes did not seem to

have a substantial impact on them (see REG10-RAND10 after

the transition in Fig. 5A; compare REG10 and RAND10 in Fig. 5B

after the sound onset). These observations suggest that PDRs

may be more closely related to changes in information con-

tent than to its absolute values.

https://doi.org/10.1016/j.cortex.2024.10.023
https://doi.org/10.1016/j.cortex.2024.10.023


Fig. 8e Information content analyses. Note. Information content calculated by the IDYOM model for all trials that one of the

participants observed during the experiment. (A) The average baseline corrected information content values. Zero

represents transition times to the following pattern. The information content for the violation (REG10-RAND10, REG10a-

REG10b) and the emergence (RAND10-REG10) of regularities differed in response to transitions. The RAND10-REG10

condition presented a gradual reduction in information content, suggesting a gradual reduction of uncertainties as a sign of

model update. On the other hand, the REG10-RAND10 and REG10a-REG10b conditions indicated an abrupt increase in

information content, suggesting instant increase of uncertainties as a sign of model reset. Note that, for RAND10-REG10,

transition times are shifted one cycle (10 tones, .5 sec), given that the first ten tones in REG10 are indistinguishable from

random sequences of tones. For baseline correction, the mean of the 1-sec interval before the transition (from ¡1 sec to 0)

was computed and subtracted from each trial. (B) Information content changes after the transition. (C) Information content

changes for the whole trial. Note that transitions were jittered in the experiment; however, for visualisation, we selected

trials with a transition at 4 sec. The shaded area represents SEM.
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We estimated information content changes to illuminate

uncertainties (Fig. 8B). Information content in REG10-RAND10

and REG10a-REG10b suddenly increased after the transition,

whereas those in RAND10-REG10 reduced. We used informa-

tion content changes from the whole trial as the basis of re-

gressors for modelling pupil magnitudes and events (see

examples in Fig. 8C).

3.6.2. Pupil size model results
We built 10 models with varying complexities to estimate the

relationship between information content changes and pupil

size. We compared these models using BICs and R2 scores.

Somemodels yielded negative R2 scores for a few participants

(3 participants in total). We dropped the data of these
Table 1 Pupil response function parameters for pupil size mode

Models IC ICþ
tmax n tmax n

IClit .93 sec 10.1 e e

ICfit 1.35 sec 1.41 e e

IC ± lit e e .93 sec 10.

IC ± fit e e 1.96 sec 2.1

IC ± fit± - - 1.68 sec 2.7

IClit* .93 sec 10.1 e e

ICfit* 1.06 sec 1.14 e e

IC ± lit* e e .93 sec 10.

IC ± fit* e e 1.95 sec 1.7

IC ± fit±* e e 1.78 2.8

Note. Average pupil response function (PRF) parameters for pupil size mod

PRF for generating IC þ and IC-. Bold shows the top two models.
participants from the dataset so we could compare the

models. Dropping these participants did not result in a

considerable change in mean PDRs, and did not affect the

order of BICs.

The most complicated model, IC ± fit±* received the best

score (see Table 1; BIC ¼ 6794 and R2 ¼ .57). We discuss

IC ± fit±* in the main text (see other models in Section S9).

Fig. 9 shows PRFs estimated for IC ± fit±*.
Fig. 10 shows predictions of the IC ± fit±*. The model could

capture the asymmetry between transition conditions; how-

ever, there were some nontrivial differences between actual

and predicted pupil responses. The model substantially

underestimated the magnitude of PDRs after regularity vio-

lations (REG10-RAND10, REG10a-REG10b) and could not
ls.

IC- ICstart R2 BIC

tmax n

e e e .14 14,440

e e e .27 12,556

1 .93 sec 10.1 e .3 12,415

9 1.96 sec 2.19 e .52 8100

6 1.71 sec 1.71 - .54 7356

e e 8 .15 14,257

e e 8.5 .33 11,567

1 .93 sec 10.1 4.09 .32 12,292

3 1.95 sec 1.73 8.02 .54 7499

8 1.89 sec 1.46 5.72 .57 6794

els. Italic indicates free parameters; IC ± fit and IC ± fit* use the same

https://doi.org/10.1016/j.cortex.2024.10.023
https://doi.org/10.1016/j.cortex.2024.10.023


Fig. 9e Pupil response functions of the pupil size model.

Note. Pupil response functions. (A) Literature-based PRF

(Pupil Response Function). (B) The distribution of PRF

parameters that maximize the R2 of participants (Red dots:

PRF parameters for positive information changes; blue

dots: negative changes). (C) PRFs of participants for positive

information content changes and (D) negative information

content changes. Participant-specific PRFs are represented

by different colours. Thick lines show average PRF

parameters.
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predict the rapid decreases in PDRs after peaks (see REG10-

RAND10 in Fig. 10A).

Coefficients of pupil size model. We assessed the fixed ef-

fect coefficients of the IC ± fit±* to estimate the relationship

between information content changes and pupil responses

(see coefficients of other models in Figure S10). Positive infor-

mation content changes affected the magnitude of pupil re-

sponses positively [Fig. 10C; ICþ: B ¼ .024, SEM ¼ .0056,

BF10 ¼ 60.82, p < .001, 95% CI ¼ (.01, .04)] and negative infor-

mationcontent changesnegatively (a reduction in theabsolute

value of negative information changes corresponds to an in-

crease in IC-), but the resulting statistical relationship was

weak [Fig. 10D; IC-: B¼ .0138, SEM¼ .0056, BF10 ¼ 2.31, p¼ .027,

95% CI ¼ (.0, .03)]. The effect of negative information content

was smaller than that of positive information content

[M¼ .0102, SEM¼ .0019, BF10 ¼ 298, p < .001, 95% CI¼ (.01, .01)].

Pupil baselinesnegativelyaffectedPDRs [Fig. 10E;B¼�.2709,

SEM ¼ .0394, BF10 > 1000, p < .001, 95% CI ¼ (�.36, �.19)]. The

model suggests a pupil drift [Fig. 10F; B ¼ .0019, SEM ¼ .0005,

BF10¼ 13.3, p¼ .003, 95%CI¼ (.0, .0)], indicating that timewithin

a trial is associated with pupil magnitude increase, but no

consistent change across blocks [Fig. 10G; B ¼ .0231,

SEM ¼ .0166, BF10 ¼ .526, p ¼ .1907, 95% CI ¼ (�.01, .06)]. The

intercept was strong across participants [Fig. 10H; B ¼ �.1299,

SEM ¼ .0351, BF10 ¼ 20, p ¼ .002, 95% CI ¼ (�.21, �.05)].

Irrelevant task performance and model parameters. We

examined the possible impact of performance variables for

the irrelevant task on the parameters of the pupil size model.
We did not observe any notable correlation between perfor-

mance variables and the coefficients of information content

changes (see Fig. 10I; BF10 values < .4 and ps > .45). These

numbers, combined with our earlier results, suggest that the

irrelevant task performance does not directly influence PDRs.

We observed a strong correlation between RTs and pupil

baseline coefficients [Fig. 10I; r¼ .498, BF10¼ 3.56, p¼ .018, %95

CI ¼ (.1, .76)]. Since low RT and high d’ are considered as a

proxy of effort, the relationship between pupil baseline co-

efficients and d' was consistent with this relationship

(r ¼ �.378) but the statistical tests were inconclusive

[BF10 ¼ 1.088, p¼ .083, %95 CI¼ (�.69, .05)]. These observations

agree with our earlier results, suggesting a relationship with

increasing effort (see RTs) and pupil baselines (see Section

3.4).

Pupil drift coefficients were related to d' [see Fig. 10I;

r ¼ .466, BF10 ¼ 2.49, p ¼ .029, %95 CI ¼ (.05, .74)]; however, for

RTs, the statistical tests were inconclusive [r ¼ �.284,

BF10 ¼ .57, p ¼ .2, %95 CI ¼ (�.63, .16)]. These results may

indicate that participants who performed well in the gap

detection task exhibited increasing PDRs within a trial.

Further, we investigated whether performance was asso-

ciated with PRFs (tmax or n). For example, participants with a

good performance in the irrelevant task might have rapid or

shorter PDRs. Interestingly, no consistent relationship was

found with tmax or n (ps > .3 and BF10 < .4) except the weak

relationship of RTs with the n of the PRF convolved with

positive information content changes (r ¼ .45, p ¼ .03,

BF10 ¼ 2.1).

Overall, pupil responses are associated with positive in-

formation content in the anticipated direction. The best

model, IC ± fit±*, suggest a strong relationship between pos-

itive information content and pupil size (BF10 ¼ 60.32). How-

ever, the relationship of pupil responses with negative

information content is weak (BF10 ¼ 2.31). It is possible that,

although negative information content leads to a reduction in

pupil size (i.e., pupil constriction), this relationship is too

small to be detected using the smoothed, slowly varying, pupil

size (Hoeks & Levelt, 1993).

Therefore, we now turn our focus to the pupil event model

to clarify this relationship. The aim of this model is to assess

the relationship between information content changes and

micro-dilation and constriction rates.

3.6.3. Pupil event model results
We followed the same model selection procedure as in the

previous. ICfit, the model that did not differentiate the type of

information content changes and did not estimate the effect

of trial onset, received the best score for both dilation

(BIC ¼ 2848) and constriction events (BIC ¼ 2572). We discuss

this model in the main text (see other models in Section S10).

PRFs estimated for micro-dilations and constrictions were

different (micro-constrictions: tmax ¼ .96 sec, n ¼ 50.35; micro-

dilations: tmax ¼ 1.63 sec, n ¼ 9.24; for tmax: BF10 ¼ 56, p < .001;

for n: BF10 ¼ 212, p < .001).

Fig. 11 shows predicted and actual event rates with respect

to trial onset up to 6 sec. In this figure, the effects of trial onset

and transitions can be seen together at 0 sece2 sec and 3

sece5 sec, respectively. The model for pupil dilation rates

could not predict rate increases after trial onsets (see the first

https://doi.org/10.1016/j.cortex.2024.10.023
https://doi.org/10.1016/j.cortex.2024.10.023


Fig. 10e Pupil size model predictions and coefficients. Note. Pupil size model results. (A, B) Actual and predicted pupil

responses for transitions and the whole sound sequences up to 6 sec. Actual and predicted pupil responses were

represented by solid and dashed lines, respectively. (C, D, E, F, G, H) fixed-effect coefficients determined for the pupil size

model. (C) Estimated relationship between positive information content changes and PDRs. These types of changes are

positively correlated with PDRs, suggesting that information content increases lead to PDRs. (D) Effect of information

content reductions on PDRs. Adding information content reductions as a separate channel increased R2 and reduced BIC but

their relationships with PDRs were not consistent across participants (BF10 ¼ 2.31). (E) Pupil baselines, the mean of 1 sec

before the sound onset, had a negative relationship with PDRs. (F) Pupil drift, (G) block order, and (H) intercept. Single points

correspond to the coefficients of participants. Error bars represent SEMs. Coloured asterisks represent the degree BF10. (I)

Correlation between performance variables and coefficients of the pupil size model. The relationship between information

content changes (ICþ and IC-) and PDRs were not affected by performance variables. On the other hand, pupil baseline and

drift coefficients were highly correlated with them.
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row of Fig. 11A, first .5 sec); however, it predicted well the

second point at which the pupil dilation rate increased (see up

to 1s in Fig. 11A) and the pupil dilation rate increase in

response to transitions (see the time range between 3 sec and

5 sec in Fig. 11B and C). The model for pupil constriction rates

performed similarly: it coarsely predicted constrictions with

small dispersions for trial onsets (see the time range between

0 and 1 sec in Fig. 11DeF), for transitions (see Fig. 11D between

3 sec and 5 sec), and for the end of epochs (see Fig. 11E).

Overall, models captured rate patterns based on informa-

tion content changes. However, they failed to capture the ef-

fect of trial onset and slightly underestimated the effect of

transitions.

Coefficients of pupil event model. Changes in information

content were positively associated with the rate of pupil di-

lations [Fig. 11G; B ¼ .0866, SEM ¼ .0137, BF10 > 1000, p < .001,

95% CI ¼ (.06, .12)]; However, their relationships with pupil

constrictions were not clear [Fig. 11G; B ¼ �.0533, SEM ¼ .0714,

BF10 ¼ .283, p ¼ .4743, 95% CI ¼ (�.21, .1)].

There was no consistent impact of pupil baselines on

dilation [Fig. 11H; B ¼ �.0075, SEM ¼ .0162, BF10 ¼ .24, p ¼ .65,

95% CI ¼ (�.04, .03)] and constriction rates [Fig. 11H; B ¼ .0794,
SEM ¼ .0683, BF10 ¼ .4, p ¼ .27, 95% CI ¼ (�.07, .22)]. The time

within a trial (i.e., pupil drift) reduced dilation [Fig. 11I;

B¼�.1474, SEM¼ .03, BF10¼ 275, p< .001, 95%CI¼ (�.21,�.08)]

and constriction rates [Fig. 11I; B ¼ �.2231, SEM ¼ .0193,

BF10 > 1000, p < .001, 95% CI ¼ (�.26, �.18)].

There was no consistent change in pupil rates across

blocks [Fig. 11J; for constriction: B ¼ .0608, SEM ¼ .0577,

BF10 ¼ .357, p ¼ .3151, 95% CI ¼ (�.06, .18); for dilation:

B ¼ �.0184, SEM ¼ .0246, BF10 ¼ .284, p ¼ .4726, 95% CI ¼ (�.07,

.03)]. Both models suggested intercepts [Fig. 11K; for dilation:

B ¼ �2.805, SEM ¼ .019, BF10 > 1000, p < .001, 95% CI ¼ (�2.85,

�2.77); for constriction: B ¼ �2.872, SEM ¼ .0241, BF10 > 1000,

p < .001, 95% CI ¼ (�2.92, �2.82)].

In line with the pupil size model, performance variables

were irrelevant to the impact of information content changes

on dilation [RTs: r ¼ .12, BF10 ¼ .302, p ¼ .6, %95 CI ¼ (�.32,

.52); d’: r ¼ �.065, BF10 ¼ .275, p ¼ .775, %95 CI ¼ (�.47, .37)]

and constriction rates [RTs: �.058, BF10 ¼ .273, p ¼ .8, %95

CI ¼ (�.47, .37); d': r ¼ .08, BF10 ¼ .28, p ¼ .72, %95 CI ¼ (�.35,

.49)]. There was no notable relationship between pupil

baseline coefficients with performance variables (all BF10 < .3

and ps > .75). We also analysed the possible relationship

https://doi.org/10.1016/j.cortex.2024.10.023
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Fig. 11e Pupil event model predictions. Note. Pupil event model predictions and coefficients. (A, B, C) Dilation rates for the

three conditions. (D, E, F) Constriction rates. The actual event rates are shown in grey, and coloured lines show predicted

event rates. Shaded areas indicate the between-participant SEMs. (G, H, I, J, K) Fixed-effect coefficients. (G) Estimated

relationship between positive and negative information content changes and pupil dilation and constriction rates. There

was a strong positive relationship between information content changes and dilation rate. However, the effect of

information content changes on constriction rates was not clear. (H) Relationship between pupil baseline and event rates (I)

Effect of trial time (i.e., pupil drift). that reduces the number of pupil events. (J) Block order and (K) Intercepts. Error bars

represent SEMs.
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between performance variables and PRFs; there was no

notable and consistent correlation observed (all BF10 < 1.4

and ps > .06).
4. Discussion

We investigated how changes in patterns of fast-paced tones

are associated with pupil dilation and constriction. Consistent

with previous research (Zhao et al., 2019), we observed that
the emergence of regularities from random patterns did not

lead to PDRs. In contrast, the violation of regularities by

random patterns evoked PDRs. To generalise the earlier

research, we used a novel but conceptually similar condition

to induce regularity violations (REG10a-REG10b). We showed

that transitions between two regular patterns also evoked

PDRs, supporting the idea that it is not the presence of random

patterns but the violation of the antecedent regularity that

leads to PDRs.

https://doi.org/10.1016/j.cortex.2024.10.023
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4.1. Information content and PDRs

We estimated information content of the stimulus sequences

using the IDYOM model (Pearce, 2005, 2018) and observed a

positive relationship between information content and PDRs,

supporting earlier results in the literature (Alamia et al., 2019;

Krishnamurthy et al., 2017; Nassar et al., 2012; Preuschoff et

al., 2011; Filipowicz, Glaze, Kable, & Gold, 2020; Payzan-

LeNestour et al., 2013; Zhao et al., 2019). Namely, transitions

that led to an information content increase evoked PDRs (i.e.,

REG10-RAND10 and REG10a-REG10b) and those that led to a

reduction did not (i.e., RAND10-REG10).

How does the information content evoke PDRs? The cur-

rent empirical evidence indicates that changes in information

content, but not its absolute level, are associated with PDRs.

For example, (a) although information content profiles of

REG10-RAND10 and REG10a-REG10b were quite different after

the transition (see Fig. 8A), we only observed a statistically

weak difference between them in terms of PDRs (see Fig. 4a).

In line with this observation, (b) we did not observe a differ-

ence between RAND10 and REG10 (in contrast to earlier ob-

servations in the literature, see Milne et al., 2021). If the pupil

had been sensitive to absolute information content level,

there would have been a substantial difference between these

conditions.

However, these conditions (RAND10 versus REG10; REG10a-

REG10b versus REG10-RAND10, 750 msec after the transition)

still showed differences in terms of information content

changes. For example, a RAND10 pattern still presents fluctu-

ations of positive andnegative information content in contrast

to a REG10 pattern (see Fig. 8A, compare REG10-RAND10 and

REG10a-REG10b after switching to a new pattern).

Based on these observations, we used changes in informa-

tion content (Fig. 7A) as a proxy for the uncertainty that par-

ticipants would perceive during the experiment and

investigated their relationships with pupil responses. We

developed two types ofmodels to investigate how information

content changes relate to PDRs. The first type ofmodel focused

on slowly varying pupil size and the magnitude of pupil re-

sponses; the second type ofmodel focusedonquick changes in

pupil size and the micro-dilation and constriction rates.

In our models, we used PRFs either to estimate the effect of

information content changes on timing of pupil responses or

as a tool for investigating the temporally varying effect of in-

formation content changes on pupil event rates.We estimated

PRFs based on an optimization procedure for each participant;

we leave a fully Bayesian analysis of the parameter un-

certainties to future work.

4.2. Pupil size model

We employed a convolutional approach based on linear

models (Cai et al., 2023; de Gee et al., 2014; Denison et al., 2020;

Hoeks & Levelt, 1993; Wierda et al., 2012) to analyse the link

between information content changes and the magnitude of

PDRs.

We used a set of models with varying complexities to

pinpoint essential model components that explain the rela-

tionship between information content changes and pupil re-

sponses. The top two models (IC ± fit±* and IC ± fit±) that
differentiated the effects of negative and positive information

content changes on pupil responses received better BICs and

R2 scores than other models. However, the poor result of

IC ± lit and IC ± lit* indicate that differentiation of these sig-

nals by itself was not sufficient; models including participant-

specific PRFs were consistently better than those using the

literature-based PRF, indicating a trend favouring individual

variabilities (Denison et al., 2020).

IC ± fit±* was able to capture the increase in pupil size.

However, for conditions where a regularity was violated, it

underestimated the peak magnitude, and after peaks, it

overestimated the pupil response magnitude especially for

REG10-RAND10. Nevertheless, the model accurately captured

the main asymmetry between transition conditions. Co-

efficients of the model suggested a relationship in the pre-

dicted direction: while positive information content is

associated with pupil size increase (i.e., dilation; BF10 ¼ 60.82),

negative information content is associated with pupil size

reduction (i.e., constriction; BF10 ¼ 2.32). However, note that

the latter relationship was weak.

We observed from estimated PRFs of participants that (a)

the average peak pupil response to information content (tmax)

was 1.78 sec in contrast to the literature’s suggestion of .93 sec

(b) The parameter that controls the width of PDRs (n) was

around 2.9 in contrast to the literature’s suggestion of n ¼ 10.1

(Hoeks & Levelt, 1993). Hoeks and Levelt (1993) had already

pointed out that n was quite variable between participants

(n ¼ 10.1 ± 4.1 s). We believe that this is a fundamental area to

be explored in the future.

One limitation of the current model is that its results could

not be cross-validated on unseen data, probably due to trial-

by-trial variability of pupil size. Early research cross-

validated its results with the mean of unseen data (Denison

et al., 2020). Since we were interested in the trial-by-trial

relationship between information content changes and the

time course of pupil size, we focused on trials.

4.3. Pupil event model

The pupil size model focuses on the relatively slow dynamics

of pupil responses (Hoeks & Levelt, 1993). However, this may

mis-characterize the relationship between pupil responses

and fast changes in information content. Based on the

inconclusive results of pupil size model for the relationship

between negative information content changes and pupil

constrictions, we focused on micro-events. Specifically, to

identify the conditions that lead to the emergence of micro-

events, we modelled their rates based on several predictors,

including changes in information content.

For pinpointing the essential model components, we fol-

lowed the same comparison procedure as for the pupil size

model. This procedure chose one of the simplest models for

pupil events, namely ICfit. In contrast with themodel selected

for pupil size (i.e., IC ± fit±*), this model does not estimate the

value of information content changes for individual partici-

pants; and does not suggest a differential sensitivity of pupil

rates for positive and negative information content changes.

Therefore, the result of model selection procedure only

allowed us to investigate the cumulative impact of informa-

tion content changes on event rates.

https://doi.org/10.1016/j.cortex.2024.10.023
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The eventmodel suggests that information content change

is positively associated with the rate of dilations (BF10 > 1000).

This result is similar to the result of the pupil size model,

demonstrating that positive changes in information content

are positively associated with the magnitude of pupil re-

sponses (i.e., dilation). However, the relationship between

information content changes and the rate of pupil constric-

tions is not clear.

Our results, in combination with those of the pupil size

model, show that information content increase (i.e., model

reset) is positively associated with an increase in the magni-

tude of slowly varying pupil size and the rate of micro-

dilations. However, there was no reliable relationship be-

tween information content reduction (i.e., model update) and

themagnitude of pupil size as well as the rate of constrictions.

This observation does not fully align with a previous study,

which reported that a reduction in information content during

a trial led to pupil constriction (Milne et al., 2021). However,

the study only found a significant difference with a stimulus

of similar complexity to ours after 7 sec, suggesting that the

effect of information content reduction on pupil responses

may be slow.

Our modelling approach assumes that the same informa-

tion content will always lead to the same PDRs, positive/

negative information content changes and PDRs are related

linearly, and the characteristics of this relationship do not

change over time. These properties have been demonstrated

to hold in other domains such as for modelling the effect of

simple auditory and visual stimuli on PDRs (Hoeks & Levelt,

1993) and were utilized to model pupil responses in earlier

studies for various phenomena such as attention and

decision-making (Cai et al., 2023; de Gee et al., 2014; Denison

et al., 2020; Hoeks & Levelt, 1993; Wierda et al., 2012). The

current models captured the coarse dynamics of pupil

behaviour in response to changes in information content

within sound sequences; however, it is still an open question

if these assumptions are appropriate for modelling the impact

of continuous, very rapidly changing signals on PDRs.

4.4. Irrelevant task performance and pupil responses

Previous research has not clarified the relationship between

irrelevant task performance and PDRs (Zhao et al., 2019). We

observed in our study that there was insufficient evidence for

any impact of performance variables (RTs and d') on PDRs

generated by regularity violations. Further, we tested their

possible effects on the coefficients of the IC ± fit±* of pupil size
model and the ICfit of pupil event model, demonstrating that

there was no direct impact of performance variables on PDRs

to changes in information content.

These results overall suggest that the modulation of irrel-

evant task performance of the relationship between infor-

mation content and PDRs is small, if not absent. Our

replication results are consistent with this notion: although

our participants performed slightly less well in the irrelevant

task than Zhao et al. (2019)’s participants, the observed PDRs

were highly similar.

Does irrelevant task performance affect baseline pupil

size? In contrast to earlier observations that the task difficulty

increases pupil baselines (van der Wel & Van Steenbergen,
2018), in our first analysis based on average baseline pupil

sizes, we could not pinpoint a strong relationship. On the

other hand, participants' RTs and their coefficients of pupil

baselines in the pupil size model were highly and positively

correlated. This observation is in line with previous research

reporting that task dynamics, such as task difficulty, affect

baseline pupil responses (Rela~no-Iborra et al., 2022).

Given that pupil baselines impact the magnitude of PDRs

negatively, the irrelevant task performance may disguise

possible increases in PDRs, especially when the pupil size is at

ceiling. A recent report suggests that the slope, delay and

curvature of PDRs along with peak pupil responses (but not

mean pupil responses) are affected by pupil baselines (Rela~no-

Iborra et al., 2022). We did not observe a consistent effect of

baselines (in terms of size) on pupil event rates. We propose

future research examines the rich effect of baseline pupil re-

sponses on the time course of pupil responses as well as the

rate of pupil events.

4.5. Pupil response times

We observed a slight pupil response time difference between

regularity violation conditions in the analysis using linear

regressions for baseline correction. However, we could not

validate this result in further analyses. Statistical tests and

exploratory analyses suggest that although participants' pupil
response times varied, pupils responded to regularity viola-

tions -on average-after 600 msec (see Section S6).

To model the temporal relationship between information

content changes and micro-events. This model suggests that

average peak pupil responses to positive information content

changes are at around 1.6 sec. This result does not exactly

align with the results of Joshi et al. (2016), who observed that

electrical micro-stimulation of the LC leads to maximum

evoked pupil size change after approximately 500 msec in

primates. Considering that the human brain needs around

150 msec to detect violations of regularities (Barascud et al.,

2016), the peak pupil response should still be around

650 msec. These figures do not exactly match with the

numbers in the literature, further research is needed to

establish the timing of PDRs to changes in environmental

statistics.

4.6. Possible neural and neuromodulatory
underpinnings

Overall, these results suggest that PDRs are a reliable

biomarker of the violation of an already established internal

model. In this respect, they resemble the MMN, a specific

negative neural response shown in EEG and MEG (Magneto-

encephalography) to deviant events that violate a simple,

sequential standard tone or abstract rule-based structures

(Paavilainen, 2013). Further research inspired by the MMN

literature should investigate the conditions that canmodulate

PDRs associated with model reset.

However, theMMN is not the only neural response that can

be associated with PDRs. Relationships between PDRs and

various brain signals have previously been investigated. One

candidate brain signal is the P300 component in EEG. P300 has

been suggested to reflect the response of the LC-NE system to

https://doi.org/10.1016/j.cortex.2024.10.023
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the outcome of internal decision-making to significant events

(Nieuwenhuis et al., 2005), context updating in response to

critical changes in the environment (Donchin & Coles, 1998),

and other cognitive processes (Verleger, 2020). Studies

explored the relationship between P300 (also referred to as P3)

and its subcomponents (P3a and P3b) with pupil-related

measures. For example, Murphy et al. (2011) investigated the

relationship of baseline and PDRs with P300 in an active

auditory oddball task and documented that baseline pupil size

has a U-shaped relationship with P300; however, PDRs were

only correlated with P300s that were elicited in later trials.

Using an active auditory oddball task, Hong et al. (2014)

observed a negative relationship between baseline pupil size

and P3, but P3 was not associated with PDRs. Lu et al. (2023)

only recently observed a positive relationship between PDRs

and P300 in a gamified version of an n-back task.

In all these studies (Lu et al., 2023; Murphy et al., 2011; Hong

et al., 2014), participants were instructed to do tasks that

required active tracking of environmental statistics, which

could modulate the arousal system (Zhao et al., 2019). In the

present study, by contrast, participants were not instructed to

make decisions based on environmental statistics. Instead,

they were instructed to find task-irrelevant gaps. Considering

the modulatory effect of behavioural requirements (Zhao

et al., 2019) and motor responses (Privitera et al., 2010) on

the arousal system and PDRs, a remaining question is how

various event related potentials in EEG and MEG, including

P300, are associated with PDRs and whether behavioural re-

quirements modulate this association.

The literature consistently showed the relationship be-

tween PDRs and phasic activity of the LC-NE system (de Gee

et al., 2017; Joshi et al., 2016; Murphy et al., 2014; Reimer

et al., 2016; Strauch et al., 2022). However, it is important to

note that a wide range of neural pathways can influence pupil

dynamics (Joshi et al., 2016; Joshi & Gold, 2020; Strauch et al.,

2022), and these pathways are also engaged in various

perceptual and cognitive processes. This suggests other

members of the arousal network that might modulate pupil

responses to changes in environmental statistics. One brain

area that needs to be considered is the basal forebrain-ACh

system (Larsen & Waters, 2018; Lloyd et al., 2023; Strauch

et al., 2022). Like the LC, the basal forebrain has extensive

projections in the brain and regulates learning and attention

by prioritizing bottom-up sensory processing using ACh as a

medium (Bentley et al., 2011; Yu&Dayan, 2005). Therefore, the

neurotransmitter ACh may mediate expected uncertainties

and evoke pupil constrictions through antagonistic interac-

tion with NE that has been associated with pupil dilations (Yu,

2012). However, recent observations report that ACh has a

dilatory effect on pupils of moving (Mridha et al., 2021; Nelson

&Mooney, 2016) as well as idle mice (Reimer et al., 2016). Also,

a recent report indicates that the basal forebrain-ACh activa-

tionmeasured via fMRI accompanies pupil dilations in resting

humans (Lloyd et al., 2023). Further research is necessary to

elucidate the effects of brain regions alongwith the associated

neuromodulators on pupil size and how environmental sta-

tistics lead to the observed effects.

Our condition in which regularities emerge from random

patterns (RAND10-REG10) can be interpreted based on the

observation that the basal forebrain-ACh activation leads to
an increase in pupil size. Since emerging regularities are

learnable, this condition must allow gradual model update

and reduction of expected uncertainties. Given the suggested

relationship between ACh and expected uncertainties (Bouret

& Sara, 2005; Dayan & Yu, 2003; Marshall et al., 2016; Nassar

et al., 2012; Yu & Dayan, 2005), emerging regularities should

covary with the reduction of ACh (Milne et al., 2021; Reimer

et al., 2016), possibly leading to a reduction of ACh-driven

pupil dilation in the light of recent observations in the litera-

ture (Larsen & Waters, 2018; Lloyd et al., 2023; Mridha et al.,

2021; Nelson & Mooney, 2016; Reimer et al., 2016; Strauch

et al., 2022).

4.7. Limitations and future studies

In our experiment, we included RAND10-REG10 as an instance

of emergence of regularities. However, this transition is rather

stark, and it would be interesting to present semi-

deterministic (rather than fully deterministic) patterns after

random patterns that involve tones breaking the predictable

structure. An anonymous reviewer suggested the possibility

of manipulating the rate of evidence for a regularity, for

example, by changing a tone at each repeat and keeping it at

the same place until the new regularity is established.

Thereby, the relationship of gradual model update and pupil

responses can be better understood.

We used changes in information content as a proxy for the

degree of environmental changes that update or reset internal

models. However, the brain might be using other heuristics to

determinewhen to reset internalmodels, and these heuristics

do not always accompany information content increases. For

example, Zhao et al. (2019) observed that pupils respond to

transitions from random patterns to very simple regular pat-

terns that consist of 1 or 2 repeating tones (i.e., RAND10-REG1

and RAND10-REG2). Since these simple regular patterns

become immediately predictable, the IDYOM model would

produce abrupt negative changes in information content. The

current models assume a continuous and linear mapping

between information content changes and PDRs, and so

cannot explain this observation. Future studies should extend

our results to clarify further the link between pupil responses

and internal model changes.

Given the spontaneous nature of PDRs to information

content that leads to model reset, future studies should

investigate PDRs associated with the reset of models built for

different modalities, such as vision or tactile, or the properties

of models built in conjunction with other models. Through

this approach, the relationship between different types of

internal models and their relationships with the arousal sys-

tem can be better understood.
5. Conclusion

Many studies suggest that phasic LC-NE activation relates to

PDRs (de Gee et al., 2017; Joshi & Gold, 2020; Murphy et al.,

2014; Reimer et al., 2016); thereby, the PDR is considered a

biomarker of the NE and arousal response. Our results directly

supported earlier research (Zhao et al., 2019) that PDRs are

associated with internal model reset as a response to abrupt
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violations of predictive relationships (i.e., unexpected un-

certainties). The size and rate of PDRs appear to reveal the

sensitivity of the LC-NE system to environmental changes,

even when these changes are not behaviourally relevant,

which is consistent with its role as a neural reset signal.
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