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Abstract

Abstract

In classification tasks where an observation is used to predict a label, we investi-
gate the relation between the two measures – classification accuracy and mutual
information. Assuming equally weighted labels we prove that the two measures
impose lower and upper bounds on each other because they capture related but dif-
ferent properties of the observation. Processing the observation may discard these
properties lowering the mutual information while the classification accuracy is un-
affected. Because the effect of such aggregations was neglected, a flawed conclusion
has been drawn in psychological research about conscious vs. unconscious process-
ing. Additionally, we demonstrate in which scenarios it is particularly important to
pay attention to the mutual information. Altogether, the mutual information com-
plements the classification accuracy and we recommend to consider it as a quality
measure in classification tasks. Open questions remain about how to deal with
the inherently biased estimators for mutual information and what effect mutual
information has on boosting.

Zusammenfassung

Bei Klassifikationsaufgaben werden Beobachtungen zur Vorhersage ihrer Klassen-
zugehörigkeit verwendet. Dabei kann die Vorhersagegenauigkeit oder die gemein-
same Information als Maß für die Güte der Klassifikation verwendet werden.
Unter der Annahme gleichverteilter Klassenzugehörigkeiten untersuchen wir den
Zusammenhang dieser beiden Maße. Beide Maße geben einander untere und obere
Schranken, da sie verwandte aber unterschiedliche Eigenschaften der Beobachtung
messen. Das Zusammenfassung von Beobachtungen kann diese Eigenschaften ver-
werfen und damit die gemeinsame Information verringert, ohne dabei dabei die
Vorhersagegenauigkeit zu reduzieren. Weil die Effekte solcher Zusammenfassun-
gen nicht beachtet wurden, kam es zu einer fehlerhaften Interpretation in der psy-
chologischen Forschung zu bewusster vs. unbewusster Verarbeitung. Zusätzlich
zeigen wir, in welchen Szenarien es besonders wichtig ist, die gemeinsame Infor-
mation als Maß zu beachten. Insgesamt ergänzt die gemeinsame Information die
Vorhersagegenauigkeit als Gütekriterium in Klassifikationsaufgaben. Eine offene
Forschungsfrage bleibt, wie mit inheränt verzerrten Schätzern für die gemeinsame
Information umgegangen werden soll und welchen Effekt die gemeinsame Informa-
tion auf Boosting hat.
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Chapter 1

Introduction

In classification tasks an observation X is used to predict a label Y . Researchers
typically evaluate such tasks by measuring the classification accuracy. This mea-
sure indicates the probability of making a correct prediction. However, this ap-
proach alone neglects relevant aspects of the classification task (Congalton, 1991,
Provost et al., 1997, Baldi et al., 2000). To complement measuring classification
accuracy researchers can apply information theory (IT) and measure the mutual
information. The mutual information indicates how much uncertainty about Y is
reduced by observing X. In this thesis we investigate the relation between the two
measures, classification accuracy and mutual information. We extend the previous
research on this topic by Fisher et al. (2009) and Hu (2014), who only considered
binary labels, to non-binary labels Y .

Consider the two observations Xa and Xb as indicators for a binary label Y in
table 1.1. The first observation is either Xa = −1 or Xa = 1 and it indicates the
correct label with a probability of 80%, see table 1.1(a). The second observation
is sometimes informative and sometimes non-informative. An informative obser-
vation of Xb = −1 or Xb = 1 always allows for a correct prediction, but we do
not always get such an informative observation. The non-informative observations
Xb = 0 only allows to guess the correct label at chance level, see table 1.1(b). The
classification accuracy of both observations is at 80%.

Xa

-1 1

Y
-1 0.4 0.1

1 0.1 0.4

(a)

Xb

-1 0 1

Y
-1 0.3 0.2 0.0

1 0.0 0.2 0.3

(b)

Table 1.1: Two contingency tables with the same classification accuracy
acc(Y |Xa) = acc(Y |Xb) = 0.8 but with different mutual information I(Y ;Xa) =
0.278bit ̸= I(Y ;Xb) = 0.6bit.

Nevertheless, we argue thatXb is strictly better thanXa. Intuitively, Xb tells us
how accurate our prediction will be. Predictions based on informative observations
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CHAPTER 1. INTRODUCTION

are always correct. Predictions based on non-informative observations are known
to be a random guessing (conditional accuracies are 100% or 50%). On the other
hand the first observation Xa does not allow to distinguish informative vs. non-
informative observations (conditional accuracies are 80%). We can not distinguish
between these two observations using the classification accuracy but by measuring
the mutual information for both observations, I(Y ;Xa) = 0.278bit vs. I(Y ;Xb) =
0.6bit. Then, the superiority of Xb over Xa is revealed because it carries more
information about the label Y .

We recommend that researchers pay attention to the mutual information as a
measure complementing the classification accuracy. To derive this conclusion we
will first give the necessary definitions in chapter 2. With this we will show that:

1. A fixed classification accuracy defines lower and upper bounds on the mutual
information and vice versa because both measures capture different proper-
ties of the observation (section 3.1).

2. The mutual information can decrease when observations are further processed
indicating that desirable properties are lost even though the classification
accuracy stays unchanged (section 3.2).

3. Some psychological researchers draw flawed conclusions from comparing dif-
ferent observations because they do not acknowledge that processed obser-
vation may inherently convey less information (chapter 4).

4. It is particularly important to pay attention to the mutual information in
“risky” scenarios where it is favorable to make no prediction instead of an
unreliably prediction (chapter 5).

2



Chapter 2

Definitions and assumptions

In this thesis we investigate the relationship between classification accuracy and
mutual information. First, we provide the relevant definitions for classification
accuracy, conditional accuracy and mutual information. Then, we state four as-
sumptions to define the setting we are in.

2.1 Classification accuracy and conditional accu-

racy

In a classification task an observation X is used to predict a label Y . The probabil-
ity of a correct prediction is the classification accuracy. The highest classification
accuracy is achieved by predicting the most probable label Y = y given an obser-
vation X = x. This optimal prediction strategy defines the Bayes classifier C∗.

Definition 1 (Bayes classifier). The Bayes classifier C∗ predicts for a given
observation X = x the most probable label Y = y.

C∗(X = x) = argmax
y∈ΩY

P (Y = y|X = x)

= {y|P (Y = y|X = x) = max
y∗

P (Y = y∗|X = x)}

We denote the support of Y by ΩY . For technical reasons we define argmax to
yield a set of the most probable labels so that C∗ is well defined even in cases with
multiple optimal labels.

In this paper we want to compare different observations. That is why we will
only consider the Bayesian classifier. Otherwise the comparison would not only
depend on the observation itself but also on the strategy to use it. But this would
unnecessarily complicate the theoretical analyses. Therefore, whenever we mention
the classification accuracy we refer to the highest possible classification accuracy
achieved by the Bayes classifier.

3



CHAPTER 2. DEFINITIONS AND ASSUMPTIONS

Definition 2 (Classification accuracy of the Bayes classifier). The classifi-
cation accuracy of the Bayes classifier using X to predict Y is

acc(Y |X) =
∑
x∈ΩX

P (X = x)max
y

P (Y = y|X = x)

A relevant concept in the comparison between classification accuracy and mu-
tual information is the conditional accuracy. The conditional accuracy is defined
by the probability of correct prediction for one particular observation X = x.

Definition 3 (Conditional Accuracy). The conditional accuracy acc(Y |X = x)
is the classification accuracy of the Bayes classifier for a given observation X = x.

acc(Y |X = x) = max
y

P (Y = y|X = x)

The conditional accuracies determine the classification accuracy. By definition
the classification accuracy is a weighted mean of the conditional accuracies.

acc(Y |X) =
∑
x∈ΩX

P (X = x)acc(Y |X = x)

We will shorten terms such as acc(Y |X = x) to acc(Y |x). We will consistently
use upper case letters such as X for random variables and lower case letters such
as x for realizations. The same goes for P (X = x) which will be shortened to
P (x).

2.2 Mutual information

Mutual information is defined in the framework of information theory (IT). This
framework models signal transmission. Consider a signal sent through a channel,
e.g. a binary value -1 or 1 that is sent through a fibre optic cable. The channel
may not convey the signal flawlessly but add noise N to the signal S. Then, the
noisy signal, or response, R = S + N is received at the other end of the channel.
From now on, in order to stay within this framework, we will refer to observations
X as responses R and to labels Y as signals S.

Other than for the classification accuracy, the perspective of IT is not exclu-
sively concerned about the proportion of correctly predicted signals. In contrast,
IT states that there is an amount of uncertainty about S which is reduced when
the response R is observed. The amount of uncertainty that is reduced defines the
mutual information. Thereby, the mutual information relies on the definition of
uncertainty, or entropy, which was given by Shannon (1948, 2001).
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2.2. Mutual information

Definition 4 (Entropy). The entropy H of a discrete random variable S is (Shan-
non, 2001, p. 19):

H(S) =
∑
s∈ΩS

P (S = s) log2
1

P (S = s)
[bit]

where ΩS is the finite support of the discrete random variable S. If P (s) = 0
then P (s) log2 1/P (s) ≡ 0 because limp→0 p log 1/p = 0.

If the signal S is binary then the entropy of S has a particular shape denoted by
the binary entropy function H2. H2 only depends on the probability p = P (S = 1)
because p sufficiently specifies the probability distribution of S.

Definition 5 (Binary entropy function H2). Let S be a binary random variable
with p = P (S = 1). Then, the entropy H(S) can denoted as the binary entropy
function H2(p):

H(S) = P (S = 1) log2
1

P (S = 1)
+ P (S = 0) log2

1

P (S = 0)

= p log2
1

p
+ (1− p) log2

1

1− p
=: H2(p)

H2(p) is shown in figure 2.1. For example if p = 0 or p = 1 then there is no
inherent uncertainty about S because it is always the same, H2(1) = 0bit. The
maximum uncertainty is reached for p = 0.5, H2(0.5) = 1bit.

When the response R is known the entropy of S may be reduced. The remaining
entropy of S given R can be expressed by the conditional entropy.

Definition 6 (Conditional entropy). The conditional entropy H of S given R
is (MacKay, 2003, p. 138):

H(S|R) =
∑
r∈ΩR

P (R = r)

[∑
s∈ΩS

P (S = s|R = r) log2
1

P (S = s|R = r)

]
[bit]

Additionally, the conditional entropy H of S given R = r is:

H(S|R = r) =
∑
s∈ΩS

P (S = s|R = r) log2
1

P (S = s|R = r)
[bit]

The mutual information is the difference between the entropy and the condi-
tional entropy, which is the uncertainty about S minus the uncertainty about S
after R is observed. This represents the amount of uncertainty that is reduced
about S given R.

Definition 7 (Mutual information). The mutual information between S and R
is (MacKay, 2003, p. 139):

I(S;R) = H(S)−H(S|R)

5
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Figure 2.1: A binary signal S has an entropy equal to the binary entropy function
H2 which depends only on p = P (S = 1).

We want to provide some intuitive examples. If S = R then observing R
reduces all uncertainty about S, H(S|R) = 0. Thus the conditional entropy of
S given R is I(S;R) = H(S) − H(S|R) = H(S) − 0 = H(S). In other words
all the uncertainty about S is reduced after we observe R. In contrast, if S and
R are independent, S ⊥⊥ R, then P (S = s|R = r) = P (S = s) and the mutual
information is I(S;R) = H(S)−H(S|R) = H(S)−H(S) = 0bit. In other words
no uncertainty about S is reduced. S = R and S ⊥⊥ R are the two extreme cases
and mutual information measures any intermediate case. The visual interpretation
of the relation between entropy and mutual information in figure 2.2 was given by
MacKay (2003, p. 140). From this visualization the symmetry of I(S;R) becomes
evident (MacKay, 2003, p. 143).

I(S;R) = H(S)−H(S|R) = I(R;S) = H(R)−H(R|S)

In contrast, the classification accuracy is not symmetric. Furthermore, the
mutual information is non-negative, I(S;R) ≥ 0 (MacKay, 2003, p. 143).
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2.3. Assumptions

𝐻(𝑆) 

𝐻(𝑅) 

𝐻(𝑆|𝑅) 𝐼(𝑆; 𝑅) 𝐻(𝑅|𝑆) 

Figure 2.2: The relation between entropies H(S), H(R), conditional entropies
H(S|R), H(R|S) and the mutual information I(R;S)

2.3 Assumptions

We will introduce four assumptions, two on the signal and two on the noise. These
assumptions will be restrictive but we will relax them in section 3.4.

We will assume the signal S to be binary and equally weighted.

Assumption 1 (binary signal). S ∈ ΩS = {−1, 1}

Assumption 2 (equal weights). P (S = s) = 1
|ΩS |

From assumption 1 follows for the conditional accuracies that ∀r : 0.5 ≤
acc(S|r) because the Bayes classifier predicts the signal with the largest proba-
bility. This implies 0.5 ≤ acc(S|R) for the classification accuracy. Instead of
writing assumption 2 as P (S = s) = 0.5, we have chosen this general form because
we will later use it with non-binary signals, |ΩS| > 2.

We will further assume the noise N to be discrete and independent of signal S.

Assumption 3 (discrete noise). N ∈ ΩN and ΩN is countable

Assumption 4 (independent noise). P (N |S) = P (N)

With assumption 3 we restrict the setting to discrete random variables because
there are conceptual difficulties with IT and continuous random variables. In
principle, the definitions we introduced can be generalized replacing the sums
by integrals. Then, we would replace the probability distributions by density
distributions. But density distributions can have values greater than 1 so that the
entropy can assume negative values and it is not clear how to interpret a negative
uncertainty. Because of such difficulties we will first discuss the discrete case and
then generalize to the continuous case in section 3.4.

Given assumptions 1-4 we are interested in a relation between the classification
accuracies acc(R|S) and acc(S|R) and the mutual information I(R;S).

7



CHAPTER 2. DEFINITIONS AND ASSUMPTIONS

2.4 Example

As an example for this setting consider S and N as given by assumptions 1-4 and
the following probability distribution:

P (N = n) =


0.25, if n = −2

0.5, if n = 0

0.25, if n = 2.

Signal S and noise N will lead to a contingency table between S and R = S+N
as shown in table 2.1.

R

-3 -1 1 3

S
-1 0.125 0.250 0.125 0.000

1 0.000 0.125 0.250 0.125

acc(S|R = r) 1 0.666̄ 0.666̄ 1

1−H(S|R = r) 1 0.082 0.082 1

Table 2.1: Contingency table between S and R. The classification accuracies are
acc(S|R) = 0.75 and acc(R|S) = 0.5. The conditional accuracies are acc(S|R =
−3) = acc(S|R = 3) = 1 and acc(S|R = −1) = acc(S|R = 1) = 2/3. The mutual
information is I(R;S) ≈ 0.311.

The classification accuracies of the Bayes classifiers are acc(S|R) = 0.75 when
predicting S by R and acc(R|S) = 0.5 when predicting R by S (non-symmetric).

The conditional accuracies are acc(S|R = −3) = acc(S|R = 3) = 1 and
acc(S|R = −1) = acc(S|R = 1) = 2/3. In other words, with an informative
response R ∈ {−3, 3} the signal S can be predicted with perfect accuracy. On the
other hand with a less-informative response R ∈ {−1, 1} the conditional accuracy
is only at 66.6̄%.

The mutual information is I(R;S) = I(S;R) = 0.311 (symmetric). The dif-
ference between the informative responses R ∈ {−3, 3} and the less-informative
responses R ∈ {−1, 1} can also be expressed in terms of conditional entropy. At
first, the uncertainty is H(S) = 1bit. An informative response reduces all uncer-
tainty, H(S|R ∈ {−3, 3}) = 0bit whereas a less-informative response reduces the
uncertainty only by a small margin, H(S|R ∈ {−1, 1}) = 918bit.

8



Chapter 3

Main results

Our main results concern the question: What is the relation between classification
accuracy and mutual information? The two measures are only loosely interrelated
because they capture different properties of the classification task. Their relation is
mediated through conditional accuracies and we derive lower and upper bounds for
the mutual information given the classification accuracy, and vice versa. (section
3.1).

Additionally, we ask: What happens when responses are further processed by
aggregations? Our result is that aggregating responses may decrease the mutual
information even when the classification accuracy is unchanged. This means that
an observation can loose desirable properties without changes in the classification
accuracy (section 3.2).

The proofs can be found in the subsequent section 3.3. We implemented R
scripts to represent our results and experiment with them (R Core Team, 2016).
The scripts are made publicly accessible via Open Science Framework and can be
found at http://osf.io/zru7b/.

3.1 Bounds

One would assume a tight relation between the accuracy of predicting a signal
S with an observation R (classification accuracy acc(S|R)) and the reduction in
uncertainty about S given R (mutual information I(S;R)). However, the relation-
ship between these two measures is non-trivial and, in fact, loose (Wang and Hu,
2009).

Proposition 1 (Mutual information is not a function of classification
accuracies). Given assumptions 1-4 there is no function f so that I(S;R) =
f(acc(R|S), acc(S|R)).

For example table 3.1 shows two contingency tables with the same classifica-
tion accuracies but different mutual information. Thus, there is no tight relation
between the mutual information and classification accuracies. However, there is a
tight relation between the mutual information and the conditional accuracies.

9
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CHAPTER 3. MAIN RESULTS

R1

-5 -3 -1 1 3 5

S
1 0.050 0.125 0.150 0.125 0.050 0.000

1 0.000 0.050 0.125 0.150 0.125 0.050

(a)

R2

-5 -3 -1 1 3 5

S
1 0.075 0.100 0.150 0.100 0.075 0.000

1 0.000 0.075 0.100 0.150 0.100 0.075

(b)

Table 3.1: Contingency table between S and R1 in (a) and between S and R2

in (b). The classification accuracies are equal, acc(R1|S) = acc(R2|S) = .3 and
acc(S|R1) = acc(S|R2) = 0.65, but the mutual information differs, I(S;R1) ≈
0.151 ̸= I(S;R2) = .17.

Proposition 2 (Mutual information is a function of conditional accura-
cies). Let assumptions 1 - 4 be true. Then, the mutual information is the weighted
mean of a function of the conditional accuracies acc(S|r).

I(S;R) =
∑
r∈ΩR

PR(r)

(
H(S)−H(S|r)

)
=
∑
r∈ΩR

PR(r)

(
1−H2(acc(S|r))

)
[bit]

Following this proposition the mutual information corresponds to a weighted
mean of a function of the conditional accuracies. In contrast, the classification
accuracy is also a weighted mean but of the conditional accuracies themselves.
Consider the example from section 2.4 again in table 3.2. This proposition states
that the mutual information can be calculated in the following way, whereas the
classification accuracy can be calculated in a similar manner:

I(S;R) = 0.125 · 1 + 0.375 · 0.082 + 0.375 · 0.082 + 0.125 · 1 ≈0.311bit

acc(S|R) = 0.125 · 1 + 0.375 · 0.667 + 0.375 · 0.667 + 0.125 · 1 =.75

This perspective on the relation between classification accuracy and mutual
information is illustrated in the schematic in figure 3.1.

10



3.1. Bounds

R

-3 -1 1 3

S
-1 0.125 0.250 0.125 0.000

1 0.000 0.125 0.250 0.125

1−H2(acc(S|r)) 1 0.082 0.082 1

acc(S|r) 1 0.667 0.667 1

PR(r) .125 0.375 0.375 0.125

Table 3.2: Contingency table between S and R. The informative responses
R ∈ {−3, 3} have conditional accuracies of acc(S|R = −3) = acc(S|R = 3) = 1,
reduce 1bit of uncertainty about S and appear with probability PR(r) = 0.125,
each. The mutual information is a weighted mean with weightings PR(r) of a
function g(x) = 1−H2(x) of the conditional accuracies acc(S|r).

𝒂𝒄𝒄(𝑺|𝒓𝟏) 1 − 𝐻2(𝒂𝒄𝒄 𝑺 𝒓𝟏 ) 𝑃𝑅 𝑟1  

𝒂𝒄𝒄(𝑺|𝒓𝟐) 1 − 𝐻2(𝒂𝒄𝒄 𝑺 𝒓𝟐 ) 
𝐼 𝑆; 𝑅  

... 

... 

𝑃𝑅 𝑟2  
𝑎𝑐𝑐 𝑆|𝑅  

𝑃𝑅 𝑟1  

𝑃𝑅 𝑟2  

Figure 3.1: From proposition 2 follows that the measures of classification accuracy
acc(S|R) and mutual information I(S;R) are the weighted mean of two different
functions on the conditional accuracy. The classification accuracy uses the identity
function acc(S|r) and the mutual information uses the reduction of uncertainty
1−H2(acc(S|r)) per response.

Up to now we have shown that the mutual information is not tightly related to
classification accuracy but to the conditional accuracies. However, there is a loose
relation between both measures through the conditional accuracies. This means
that a fixed classification accuracy acc(S|R) restricts the conditional accuracies
which in turn restrict the range of the mutual information I(S;R). As a result
there are lower and upper bounds for I(S;R) given acc(S|R). These bounds have
been reported before by Fano and Hawkins (1961) and Kovalevsky (1967).
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Proposition 3 (Bounds on the mutual information given the classification
accuracy). Let assumptions 1 - 4 be true. For a given classification accuracy
acc(S|R) the mutual information I(S;R) has lower and upper bounds:

1−H2(acc(S|R)) ≤ I(S;R) ≤ 2acc(S|R)− 1

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Information by conditional accuracy

p

1 
−

 H
2(

p)

Figure 3.2: The so-called binary symmetric channel capacity 1−H2(p) is strictly
convex because H2 is strictly concave. Jensen’s inequality for strictly convex func-
tions states that means of function values are strictly larger than function values of
means. For example if the function values (and weights) are 0.5 (0.4) and 1 (0.6)
then the mean of function values (dashed line) is 0.4 · [1−H2(0.5)]+0.6 · [1−H2(1)]
compared to the function value of the mean (solid curve) 1−H2(0.4 · 0.5+ 0.6 · 1).
The terms resolve to 0.4 · 0 + 0.6 · 1 = 0.6 and 1−H2(0.8) ≈ 0.278.

The proof for this proposition relies on Jensen’s inequality (Jensen, 1906) as
visualized in figure 3.2. In short, the argument of our proof is that g(acc(S|r)) =
1−H2(acc(S|r)) is a strictly convex function for which Jensen’s inequality implies
that the lower bound is reached when all conditional accuracies are on average,
∀r : acc(S|r) = acc(S|R). The upper bound occurs when all conditional accuracies
are either 0.5 or 1, ∀r : acc(S|R = r) ∈ {0.5, 1}.
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3.1. Bounds

Conversely, it immediately follows that there are bounds on the classification
accuracy for a given mutual information.

Proposition 4 (Bounds on the classification accuracy given the mutual
information in the binary case). Let assumptions 1 - 4 be true. For a given
mutual information I(S;R) the classification accuracy acc(S|R) has lower and
upper bounds:

I(S;R) + 1

2
≤ acc(S|R) ≤ H−1

2 (1− I(S;R))

With H−1
2 (x) being the inverse of H2(x) given that x ≥ 0.5 so that H−1

2 (x) ≥ 0.5
as well.

The last two propositions state that there are information theoretic worst and
best cases for a given classification accuracy as well as minimal and maximal
classification accuracy for a given mutual information. The bounds given by these
two proofs are shown in figure 3.3. For example consider a classification accuracy
of acc(S|R) = 0.8. For that classification accuracy the mutual information is at
least I(S;R) = 0.278bit and at best I(S;R) = 0.6bit. The worst case occurs when
all conditional accuracies are ∀r ∈ ΩR : acc(S|r) = 0.8. In the best case 40% of
the conditional accuracies are 0.5 and 60% of them are 1. These are the examples
from the introduction.

Notice that the examples from the introduction do not fulfill assumption 4
(independent noise). In section 3.4.4 we will show that this assumption is not
necessary to our results and that the bounds are tight for both, the independent
and the dependent case.

0.5 0.6 0.7 0.8 0.9 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

acc(S|R)

I(
S

;R
)

(a) Lower and upper bounds on the
mutual information I(S;R) given
the classification accuracy acc(S|R)
in the binary case.

0.0 0.2 0.4 0.6 0.8 1.0

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

I(S;R)

ac
c(

S
|R

)

(b) Lower and upper bounds on the
classification accuracy acc(S|R)
given the mutual information
I(S;R) in the binary case.

Figure 3.3: The bounded relationship between acc(S|R) and I(S;R) according to
propositions 3 and 4.

Up to now we have only considered binary signals and the previous literature
has already provided these bounds. Our main contribution is the generalization to

13
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the case with M signal values. We chose to provide the proposition and proof for
the binary case because we have shaped them in a way that immediately allows for
the generalization. Thus, the proof for the non-binary case has the same structure
as the proof for the binary case. That is why we considered it a good starting
point. Our generalization yields the following bounds for the non-binary case with
M signal values.

Assumption 5 (M signal values). S ∈ {1, 2, ...,M}

M signal values implies that the conditional accuracies are larger than 1/M ,
∀r : 1/M ≤ acc(S|r) because the Bayes classifier predicts the signal with the
largest probability. This implies 1/M ≤ acc(S|R).

Proposition 5 (Bounds on the mutual information given the classification
accuracy). Let assumptions 5 (M signal values) and 2 - 4 be true. For a given
classification accuracy acc(S|R) the mutual information I(S;R) has lower and
upper bounds:

log(M)−H2(acc(S|R))− (1− acc(S|R)) log(M − 1) ≤ I(S;R)

I(S;R) ≤ log(M)

(
1−M

(
1− acc(R|S)

M − 1

))
((The last line has changed on January 6, 2022 after I was made away that there
was a mistake in the old version, which read: I(S;R) ≤ M

M−1
(acc(S|R)−1). Thank

you, CR!))

𝑎𝑐𝑐 𝑆 𝑅

𝑀
 

1 − 𝑎𝑐𝑐 𝑆 𝑅

𝑀(𝑀 − 1)
 

𝑀𝑎𝑐𝑐 𝑆 𝑅 − 1

𝑀(𝑀 − 1)
 

1 − 𝑎𝑐𝑐 𝑆 𝑅

𝑀 − 1
 0 

Figure 3.4: The left table sketches a contingency table with minimal mutual in-
formation, the right table sketches the maximal mutual information. The minimal
mutual information occurs when all responses are on average. In contrast, the
maximal mutual information is obtained when there are only perfectly accurate
and non-informative responses. The pattern is similar to the binary case.
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3.1. Bounds

The lowest possible mutual information occurs when all conditional accura-
cies are on average, ∀r : acc(S|R = r) = acc(S|R). The highest possible mu-
tual information occurs when all conditional accuracies are either 1/M or 1,
∀r : acc(S|R = r) ∈ {1/M, 1}. This is the same principle as in the binary case
with M = 2. Figure 3.4 shows a schematic example of the shape of the minimal vs.
maximal mutual information observations with M = 4. The bounds for different
signal support sizes M are illustrated in figure 3.5. We refused on showing the
inverted bounds for the non-binary case because they can be obtained by inverting
our result and because they are not relevant here.

From these propositions and proofs we understand that the mutual information
captures multiple aspects of the response next to the classification accuracy, which
is only one of these aspects. In the binary case the mutual information also cap-
tures the variation of conditional accuracies as another aspect. If all conditional
accuracies are on average (no variation) then there is minimal mutual information.
If all conditional accuracies are 0.5 or 1 (maximal variation) then the mutual infor-
mation is maximal. The variation of conditional accuracies is aspect 1. In chapter
5 we will show how this aspects become important in practical examples.

Similarly, in the non-binary case the mutual information captures a second as-
pect. This aspect is revealed when we had to optimize the distribution over the
remaining response values in the proof of proposition 5. For example, consider a
response r with a marginal probability of PR(r) = 0.1. In the binary case a con-
ditional accuracy of acc(S|R = r) = 0.8 determines the probability distribution,
P (s1, r) = 0.08 and P (s2, r) = 0.02. In the non-binary case with M = 3 the prob-
ability P (s1, r) = 0.08 is still determined. But the probabilities for the remaining
signal values s2 and s3 are not restricted. They could be P (s2, r1) = 0.01 and
P (s3, r1) = 0.01 (minimal mutual information); or they could be P (s2, r2) = 0.02
and P (s3, r2) = 0 (maximal mutual information). If we observe r2 and our initial
prediction s1 is wrong then we at least know, that the true signal is s2. With r1
there is no such guarantee. Thus, r2 conveys more information about the signal
compared to r1. This property, the entropy over the remaining response values, is
aspect 2. Aspect 2 may be important for example in medical settings where a test
outcome (response) indicates different diseases (signal). If the first diagnose was
wrong then it is relevant what other diseases are likely.

Because the mutual information additionally captures these two aspects it can
complement the classification accuracy. We encourage researchers to think about
how relevant these aspects are in their field and to take the mutual information
into account accordingly.
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0
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3

4

Bounds on mutual information for non−binary signals

acc(S|R)

I(
S

;R
)

0 1/16 1/4 1/2 1

M = 2

M = 4

M = 16

Figure 3.5: The bounds on I(S;R) given acc(S|R) according to proposition 5 for
different signal support sizes M .

3.2 Aggregation of responses

Sometimes it is convenient to further process the response. For example, we may
want to simplify it by binning, or aggregating, all those response values that predict
the same signal value. But such aggregations may reduce the mutual information
so that we end up with a worse observation even though the classification accuracy
stays unchanged. In this section we will define aggregations as a way to process
the response and show when they decrease the mutual information.

First, we define simple aggregation functions that aggregate two response val-
ues.

Definition 8 (Simple aggregation function). A simple aggregation function f
is the identical function on R except for two responses r1 and r2, ∀r ∈ ΩR\{r1, r2} :
f(r) = r. The two responses are mapped – aggregated – onto the same new value
r′ /∈ ΩR, f(r1) = f(r2) = r′.

Now, we extend the definition from simple aggregation functions to (complex)
aggregation functions. An aggregation function is a possibly infinite composition
of simple aggregation functions.
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Definition 9 (Aggregation function). An aggregation function f is a composi-
tion of (possibly infinite) simple aggregation functions h1, h2, ....

f = h1 ◦ h2 ◦ ...
f(R) = h1(h2(...R...))

The properties of simple aggregation functions translate to aggregation func-
tions by induction. Therefore, we will only show when simple aggregation functions
decrease the classification accuracy vs. the mutual information. In general, an ag-
gregation can only keep the mutual information constant or decrease it as given
by the data processing inequality (Cover and Thomas, 2006, p. 34). But when
does the mutual information strictly decrease? And when does the classification
accuracy change?

Proposition 6 (Aggregating responses decreases classification accuracy
and mutual information). Let assumptions 5 (M signal values) and 2 - 4 be
true. Consider a simple aggregation function f that aggregates r1 and r2.

(a) If C∗(R = r1) ∩ C∗(R = r2) ̸= ∅ then acc(S|R) = acc(S|f(R)).

(b) If C∗(R = r1) ∩ C∗(R = r2) = ∅ then acc(S|R) > acc(S|f(R)).

(c) If P (S|R = r1) = P (S|R = r2) then I(S;R) = I(S; f(R)).

(d) If P (S|R = r1) ̸= P (S|R = r2) then I(S;R) > I(S; f(R)).

An aggregation keeps the classification accuracy constant if the aggregated
response values indicate the same signal value (a), otherwise the classification ac-
curacy strictly decreases (b). Of course, such an aggregation is always to avoid.
On the other hand, an aggregation keeps the mutual information constant if and
only if the aggregated responses have identical conditional probabilities (c), other-
wise the mutual information strictly decreases (d). See table 3.3 for an illustrative
example with M = 2.

This means that if we treat responses with different conditional accuracies as
equal (aggregate them) then we decrease the mutual information. This happens
even if they indicate the same signal value. We loose the desirable properties
which we have called aspect 1 and 2. But as we will show in chapters 4 and 5 these
properties indicated by mutual information are sometimes important and they
will be lost upon such aggregations. In conclusion, when responses are processed
further we recommend to pay close attention to the mutual information.
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fa(R)

(-2,-1) 1 2

S
-1 0.30 0.20 0.00

1 0.15 0.25 0.10

(a) acc(S|R) = 0.65, I(S;R) ≈ 0.141bit

fb(R)

-2 (-1,1) 2

S
-1 0.10 0.40 0.00

1 0.05 0.35 0.10

(b) acc(S|R) = 0.6, I(S;R) ≈ 0.115bit

fc(R)

(-2,-1) 1 2

S
-1 0.30 0.20 0.00

1 0.15 0.25 0.10

(c) acc(S|R) = 0.65, I(S;R) ≈ 0.141bit

fd(R)

-2 -1 (1,2)

S
-1 0.10 0.20 0.20

1 0.05 0.10 0.35

(d) acc(S|R) = 0.65, I(S;R) ≈ 0.067bit

R

-2 -1 1 2

S
-1 0.10 0.20 0.20 0.00

1 0.05 0.10 0.25 0.10

(e) acc(S|R) = 0.65, I(S;R) ≈ 0.141bit

Table 3.3: Contingency tables (a) - (d) are aggregations of (e) exemplifying cases
(a) - (d) from proposition 6. Starting with contingency table (e) the classification
accuracy is acc(S|R) = 0.65 and the mutual information is I(S;R) = 0.141bit.
(a) If responses −2 and −1 are aggregated the classification accuracy stays un-
changed, acc(S|fc(R)) = acc(S|R) = 0.65, because both responses indicate the
same signal, e.g. C∗(−2) ∩ C∗(−1) = {−1}. But (b) if responses −1 and 1
are aggregated the accuracy decreases, acc(S|fb(R)) = 0.6. In (c) the same
aggregation as (a) is used and this does not decrease the mutual information
I(S; fc(R)) = 0.141bit because the conditional probabilities are equal (a ratio
of 2:1 for both responses). (d) Aggregating responses 1 and 2 does decrease the
mutual information to I(S; fd(R)) ≈ 0.067 while the classification accuracy stays
unchanged. This is because highly informative cases R = 2 and less-informative
cases R = 1 are mixed.
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3.3 Proofs

In this section we present the proofs for the propositions from the previous sections.

Proof of proposition 1 (Mutual information is not a function
of classification accuracies)

We make a proof by contradiction. Assume that the opposite of this proposition
was true, that there is a function f with I(S;R) = f(acc(R|S), acc(S|R)). If this
is the case then every signal-response pair with the same classification accuracies
must have the same mutual information.

acc(R1|S1) = acc(R2|S2) ∧ acc(S1|R1) = acc(S2|R2) =⇒ I(R1;S1) = I(R2;S2)

Now consider following noise distributions, N1 and N2, with the same support
ΩN1 = ΩN2 = {−4,−2, 0, 2, 4} as a counter example.

P (N1 = n) =



0.1, if n = −4

0.25, if n = −2

0.3, if n = 0

0.25, if n = 2

0.1, if n = 4

P (N2 = n) =



0.15, if n = −4

0.2, if n = −2

0.3, if n = 0

0.2, if n = 2

0.15, if n = 4

Noise N1 and N2 will lead to the responses R1 = S + N1 and R2 = S +
N2 as shown in table 3.1. Remember, that the noise S is fully specified by the
assumptions. The accuracies of both examples are equal, acc(R1|S) = acc(R2|S) =
.3 and acc(S|R1) = acc(S|R2) = 0.65. But the mutual information is not equal,
I(R1;S) ≈ 0.151 ̸= I(R2;S) = .17. This is the desired contradiction. ■

Proof of proposition 2 (Mutual information is a function of
conditional accuracies)

The first step is to use the definition of the mutual information and to reformulate
it to be the weighted sum of the reduction in uncertainty per response. We denote
marginal probabilities as PS(s) = P (S = s) and PR(r) = P (R = r).

I(S;R) = H(S)−H(S|R)

=
∑
s∈ΩS

PS(s) log
1

PS(s)
−
∑
r∈ΩR

PR(r)
∑
s∈ΩS

P (s|r) log 1

P (s|r)

=
∑
r∈ΩR

PR(r)

[ ∑
s∈ΩS

PS(s) log
1

PS(s)
−
∑
s∈ΩS

P (s|r) log 1

P (s|r)

]
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=
∑
r∈ΩR

PR(r)

[
H(S)−H(S|r)

]
This is the general case. Additionally, the signal S is binary and equally

weighted by assumption. Thus, H(S) = H2(0.5) = 1bit and every response can be
considered as a binary channel with an accuracy equal to the conditional accuracy
of that response, acc(S|r). Therefore, the conditional entropy can be replaced by
the binary entropy function, H2(acc(S|r)).

I(S;R) =
∑
r∈ΩR

PR(r)

[
1bit−

∑
s∈ΩS

P (s|r) log 1

P (s|r)

]
=
∑
r∈ΩR

PR(r)

[
1bit− P (S = −1|r) log 1

P (S = −1|r)

− P (S = 1|r) log 1

P (S = 1|r)

]
=
∑
r∈ΩR

PR(r)

[
1bit− acc(S|r) log 1

acc(S|r)

− (1− acc(S|r)) log 1

(1− acc(S|r))

]
=
∑
r∈ΩR

PR(r)

[
1bit−H2(acc(S|r))

]
■

Proof of proposition 3 (Bounds on the mutual information
given the classification accuracy)

The lowest and highest mutual information for a given classification accuracy are
expressed by two optimization problems corresponding to the lower and upper
bounds:

(1)min
S,R

I(S;R) s.t. acc(S|R) const.

(2)max
S,R

I(S;R) s.t. acc(S|R) const.

In order to solve (1) and (2) it is important to note that the classification
accuracy is a weighted mean of the conditional accuracies:

acc(S|R) =
∑
r∈ΩR

PR(r)max
s

P (s|r) =
∑
r∈ΩR

PR(r)acc(S|r)

20



3.3. Proofs

(1) For the mutual information proposition 2 states that it is a weighted mean of
the reduction of uncertainty per response:

I(S;R) =
∑
r∈ΩR

PR(r)

(
1−H2(acc(S|r))

)

We denote the conditional accuracies xi = acc(S|ri), the marginal probabilities
wi = P (ri) and the reduction in uncertainty as g(x) = 1 −H2(x). Then, the
first optimization problem is:

min
x1,w1,x2,w2,...

∑
i

wig(xi)

s.t.
∑
i

wixi const.,
∑
i

wi = 1, 0 ≤ wi,≤ 1 and 0.5 ≤ xi ≤ 1

H2(x) is a strictly concave function and thus g(x) = 1 − H2(x) is strictly
convex. Therefore, we can apply Jensen’s inequality in its general form:

g

(∑
i

wixi

)
≤
∑
i

wig(xi)

By resubstitution of
∑

i wixi = acc(S|R) we get the minimal goal value as
g (
∑

i wixi) = 1 −H2(acc(S|R)) ≤ I(S;R). According to Jensen’s inequality,
the equality holds if and only if xi is constant. Since xi denotes the condi-
tional accuracies, this means that the lower bound for the mutual information
is reached, when all conditional accuracies are equal. Then, the conditional
accuracies are equal to the classification accuracy because it is their weighted
mean, ∀ri ∈ ΩR : acc(S|ri) = acc(S|R).

(2) We denote the optimization problem as in (1).

max
x1,w1,x2,w2,...

∑
i

wig(xi)

s.t.
∑
i

wixi const.,
∑
i

wi = 1, 0 ≤ wi,≤ 1 and 0.5 ≤ xi ≤ 1

We will show that the mutual information is only maximized when the con-
ditional accuracies of all response values are either 0.5 or 1. If there was a
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conditional accuracy 0.5 < xi = acc(S|ri) < 1 with wi = PR(ri) then we could
replace xi and wi by:

xi →

{
x

′
i = 0.5

x
′′
i = 1

and wi →

{
w

′
i = 2wi(1− xi)

w
′′
i = 2wi(xi − 0.5)

The substitution will not violate the constraints because if the constraints
did hold before, they will do so after the substitution as well. The weights
add up and can not be negative because xi > 0.5: wi = w

′
i + w

′′
i and 0 ≤

w
′
i, w

′′
i ≤ 1. The conditional accuracies obviously satisfy the constraint that

0.5 ≤ x
′
i, x

′′
i ≤ 1. The classification accuracy stays constant:

w
′

ix
′

i + w
′′

i x
′′

i = 2wi(1− xi) · 0.5 + 2wi(xi − 0.5) · 1
= wi − wixi + 2wixi − wi

= wixi

Thus, the constraints are not violated. But the goal function is strictly larger
as stated by Jensen’s inequality for strictly convex functions. As a result all
conditional accuracies acc(S|ri) = xi must be 0.5 or 1. They can not be further
apart because conditional accuracies must be within [0.5; 1] for binary S.

Now, if all response values have a conditional accuracy of 0.5 or 1 then there is
only one ratio between these conditional accuracies that satisfies the constraint
that acc(S|R) =

∑
i wixi is constant. Responses with conditional accuracy

acc(S|ri) = xi = 0.5 must appear with probability 2(1 − acc(S|R)) and re-
sponses with acc(S|ri) = xi = 1 must appear with probability 2(acc(S|R)−0.5)
so that the classification accuracy acc(S|R) is constant:

∑
i

wixi =
∑

i with xi=0.5

wi · 0.5 +
∑

i with xi=1

wi · 1

= 2(1− acc(S|R)) · 0.5 + 2(acc(S|R)− 0.5) · 1
= 1− acc(S|R) + 2acc(S|R)− 1

= acc(S|R)

Knowing the conditional accuracies, 0.5 and 1, and their respective weightings,
2(1 − acc(S|R)) and 2(acc(S|R) − 0.5), we can now apply proposition 2 to
calculate the upper bound on the mutual information:

I(S;R) =
∑
r∈ΩR

PR(r)

(
1−H2(acc(S|r))

)
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≤
∑

r∈ΩR with acc(S|r)=0.5

PR(r)

(
1−H2(0.5))

)

+
∑

r∈ΩR with acc(S|r)=1

PR(r)

(
1−H2(1)

)

=
∑

r∈ΩR with acc(S|r)=0.5

PR(r)

(
1− 1

)

+
∑

r∈ΩR with acc(S|r)=1

PR(r)

(
1− 0

)
=

∑
r∈ΩR with acc(S|r)=1

PR(r)

=2(acc(S|R)− 0.5)

=2acc(S|R)− 1

■

Proof of proposition 4 (Bounds on the classification accuracy
given the mutual information in the binary case)

Given proposition 3 the bounds are simply inverted. The upper bound on I(S;R)
given acc(S|R) becomes the lower bound on acc(S|R) given I(S;R).

I(S;R) ≤ 2acc(S|R)− 1

I(S;R) + 1

2
≤ acc(S|R)

Consistently, the lower bound on I(S;R) becomes the upper bound on acc(S|R).

1−H2(acc(S|R)) ≤ I(S;R)

1− I(S;R) ≤ H2(acc(S|R))

H−1
2 (1− I(S;R)) ≥ acc(S|R)

The inequality sign switches because we take the inverse of H2(acc(S|R)) which
is strictly increasing in the range of 0.5 ≤ acc(S|R) ≤ 1. Hence, H−1

2 is strictly
decreasing and applying this function inverts the inequality sign. ■
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Proof of proposition 5 (Bounds on the mutual information
given the classification accuracy)

Similar to proposition 3 we have two optimization problems and the proofs follow
the same structure.

(1)min
S,R

I(S;R) s.t. acc(S|R) const.

(2)max
S,R

I(S;R) s.t. acc(S|R) const.

(1) From proposition 2 we know a suitable form of the mutual information:

I(S;R) =
∑
r∈ΩR

PR(r)

(
1−H(S|r)

)

But unlike in proposition 3 we can not use the binary entropy function H2(S|r)
because the signal is not binary. Instead we have to derive the general form
of the optimal H(S|r). First, note that H(S|r) =

∑
s P (s|r) log(1/P (s|r)) is

strictly concave because x log(1/x) is strictly concave (MacKay, 2003, p. 35).
Now, because we want to minimize I(S;R), we want to maximize H(S|r).
At the same time, the constraint is acc(S|R) =

∑
r PR(r)acc(S|r). Thus,

we want to maximize H(S|r) subject to constant acc(S|r). With a constant
acc(S|r) there must be one signal value s∗ for which the conditional probability
is P (s∗|r) = acc(S|r). Then, the maximal entropy H(S|r) is reached when all
other M − 1 signal values have a uniform distribution because of Jensen’s
inequality for strictly concave functions. As a result, the maximal conditional
entropy given a conditional accuracy acc(S|r) is:

H(S|r) ≤ acc(S|r) log
(

1

acc(S|r)

)
+ (M − 1)

(1− acc(S|r))
M − 1

log

(
M − 1

(1− acc(S|r))

)
= acc(S|r) log

(
1

PR(r)acc(S|r)

)
+ (1− acc(S|r)) log

(
1

(1− acc(S|r))

)
+ (1− acc(S|r)) log (M − 1)

= H2(acc(S|r)) + (1− acc(S|r)) log(M − 1)

We denote the conditional accuracies xi = acc(S|ri), the marginal probabilities
wi = P (ri) and the reduction of uncertainty as
g(x) = log(M) − [H2(x) + (1 − x) log(M − 1)]. With this we are back to
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what we have done in the proof of proposition 3. The optimization problem
now is:

min
x1,w1,x2,w2,...

∑
i

wig(xi)

s.t.
∑
i

wixi const.,
∑
i

wi = 1, 0 ≤ wi,≤ 1 and 1/M ≤ xi ≤ 1

Now, g(x) is strictly convex because H(S) is constant and H(S|r) is, as we
noted, strictly concave. We can apply Jensen’s inequality again and get that
all conditional accuracies must be equal, ∀ri ∈ ΩR : acc(S|ri) = acc(S|R).
This leads to the minimal goal value.

g

(∑
i

wixi

)
≤ I(S;R)

log(M)−H2(acc(S|R))− (1− acc(S|R)) log(M − 1) ≤ I(S;R)

Note, that we do not run into a local optimum by choosing the distribution
of conditional accuracies based on our choice of H(S|r). As we have shown,
whatever the form of H(S|r) it must be strictly concave. Therefore, our choice
of the conditional accuracies is optimal and thus our (local) choice of H(S|r)
is also globally optimal.

(2) We denote the problem as in (1).

max
x1,w1,x2,w2,...

∑
i

wig(xi)

s.t.
∑
i

wixi const.,
∑
i

wi = 1, 0 ≤ wi,≤ 1 and 1/M ≤ xi ≤ 1

We will show that the mutual information is only maximized when the condi-
tional accuracies of all response values are either 1/M or 1. Because if there
was a response ri with conditional accuracy 1/M < xi = acc(S|ri) < 1 with
wi = PR(ri) then we could replace xi and wi by:

xi →

{
x

′
i = 1/M

x
′′
i = 1

and wi →

{
w

′
i = wiM

1−xi

M−1

w
′′
i = wi

Mxi−1
M−1

The substitution will not violate the constraints, if they did hold before. The
weights add up and can not be negative because xi > 1/M , wi = w

′
i +w

′′
i and
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0 ≤ w
′
i, w

′′
i ≤ 1. The conditional accuracies obviously satisfy the constraints,

1/M ≤ x
′
i, x

′′
i ,≤ 1. The classification accuracy stays constant:

w
′

ix
′

i + w
′′

i x
′′

i = wiM
1− xi

M − 1
· 1

M
+ wi

Mxi − 1

M − 1
· 1

= wi
1− xi

M − 1
+ wi

Mxi − 1

M − 1

= wi
(M − 1)xi + 1− 1

M − 1

= wixi

Thus, the constraints are not violated. But the goal function is strictly larger
as stated by Jensen’s inequality for strictly convex functions. As a result all
conditional accuracies acc(S|ri) = xi must be 1/M or 1. They can not be
further apart because conditional accuracies in this setting must be within
[1/M ; 1] for signals with M response values.

Now, if all response values have a conditional accuracy of 1/M or 1 then there is
only one ratio between these conditional accuracies that satisfies the constraint
that acc(S|R) =

∑
i wixi is constant. Responses with conditional accuracy

acc(S|ri) = xi = 1/M must appear with probability M(1−acc(S|R))/(M−1)
and responses with acc(S|ri) = xi = 1 with (Macc(S|R)− 1)/(M − 1) so that
the classification accuracy acc(S|R) is constant:

∑
i

wixi =
∑

i with xi=1/M

wi ·
1

M
+

∑
i with xi=1

wi · 1

=
M(1− acc(S|R))

M − 1
· 1

M
+

Macc(S|R)− 1

M − 1
· 1

=
(M − 1)acc(S|R) + 1− 1

M − 1

= acc(S|R) =
∑
i

wixi

Knowing the conditional accuracies, 1/M and 1, and their respective weight-
ings, M(1 − acc(S|R))/(M − 1) and (Macc(S|R) − 1)/(M − 1), we can now
apply proposition 2 to calculate the maximal mutual information. In order
to do so we will use that the conditional probabilities of a response with con-
ditional accuracy acc(S|r) = 1/M must be the uniform distribution and the
conditional entropy is H(S|r) = log(M). Responses with a conditional accu-
racy of acc(S|r) = 1 have a conditional entropy of H(S|r) = 0.
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I(S;R) =
∑
r∈ΩR

PR(r)

(
H(S)−H(S|r)

)
≤

∑
r∈ΩR with acc(S|r)=1/M

PR(r)

(
log(M)− log(M)

)

+
∑

r∈ΩR with acc(S|r)=1

PR(r)

(
log(M)− 0

)

= log(M)

(
1−M

(
1− acc(R|S)

M − 1

))
((The last line has changed on January 6, 2022 after I was made away that
there was a mistake in the old version.))

■

Proof of proposition 6 (Aggregating responses decreases clas-
sification accuracy and mutual information)

We start the proof by observing three properties which we will use throughout the
proofs of (a)-(d). First, the aggregation function f maps r1 and r2 but nothing
else onto r′. Therefore the joint probabilities with respect r′ are just the sum of
joint probabilities with respect r1 and r2.

∀s ∈ ΩS : P (s, r′) = P (s, r1) + P (s, r2) (3.1)

Using this property we can derive that the marginal probability of r′ is the sum
of marginal probabilities of r1 and r2:

Pf(R)(r
′) =

∑
s

P (s, r′) =
∑
s

[P (s, r1) + P (s, r2)] =
∑
s

P (s, r1) +
∑
s

P (s, r2)

= PR(r1) + PR(r2) (3.2)

Additionally, we can show that the conditional probabilities given r′ are a
weighted mean of the two conditional probabilities given r1 and r2.

P (s, r′) = P (s, r1) + P (s, r2)

Pf(R)(r
′)P (s|r′) = PR(r1)P (s|r1) + PR(r2)P (s|r2)

P (s|r′) = PR(r1)

Pf(R)(r′)
P (s|r1) +

PR(r2)

Pf(R)(r′)
P (s|r2) (3.3)
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(a) We start by solving the equality between classification accuracies acc(S|R) and
acc(S|f(R)) which we want to prove. We use that the classification accuracy
is a weighted mean of its conditional accuracies and the property in equation
(3.1):

acc(S|R) = acc(S|f(r))∑
r∈ΩR

PR(r)max
s

P (s|r) =
∑

r∈Ωf(R)

Pf(R)(r)max
s

P (s|r)

∑
r∈ΩR

max
s

P (s, r) =
∑

r∈Ωf(R)

max
s

P (s, r)

max
s

P (s, r1) + max
s

P (s, r2) = max
s

P (s, r′)

max
s

P (s, r1) + max
s

P (s, r2) = max
s

(
P (s, r1) + P (s, r2)

)
From the assumption C∗(r1) ∩ C∗(r2) ̸= ∅ follows that there is a signal value
s∗ which is predicted for both responses, ∃s∗ : s∗ ∈ C∗(r1) ∩ C∗(r2). By
definition of the Bayes classifier follows that s∗ maximizes all terms, P (s∗, r1) =
maxs P (s, r1) and P (s∗, r2) = maxs P (s, r2). Now we can resolve the equality
and see that it holds.

P (s∗, r1) + P (s∗, r2) = P (s∗, r1) + P (s∗, r2)

(b) We start by solving the inequality the same way as in (a).

acc(S|R) > acc(S|f(r))

max
s

P (s, r1) + max
s

P (s, r2) > max
s

(
P (s, r1) + P (s, r2)

)
From the assumption C∗(r1) ∩ C∗(r2) = ∅ follows that if s

′ ∈ C∗(r1) and
s
′′ ∈ C∗(r2) then s

′ ̸= s
′′
, for any choice of s

′
and s

′′
. But then, no matter

which signal value s∗ maximizes the right side, the inequality holds. This is
simply because the aggregates responses do not agree on the optimal signal
value.

s∗ = s
′
=⇒ P (s

′
, r1) = P (s∗, r1) ∧ P (s

′′
, r1) > P (s

′
, r1)

s∗ = s
′′

=⇒ P (s
′
, r1) > P (s∗, r1) ∧ P (s

′′
, r1) = P (s

′
, r1)

s∗ ∈ ΩS \ {s′
, s

′′} =⇒ P (s
′
, r1) > P (s∗, r1) ∧ P (s

′′
, r1) > P (s

′
, r1)
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(c) To solve the equality between I(S;R) and I(S; f(R)) we use that by proposi-
tion 2 the mutual information is a weighted mean of the reduced entropy.

I(S;R) = I(S; f(R))∑
r∈ΩR

PR(r)

(
H(S)−H(S|r)

)
=

∑
f(r)∈Ωf(R)

Pf(R)(f(r))

(
H(S)−H(S|f(r))

)
∑

r∈{r1,r2}

PR(r)

(
H(S)−H(S|r)

)
= Pf(R)(r

′)

(
H(S)−H(S|f(r))

)
−

∑
r∈{r1,r2}

PR(r)H(S|r) = −Pf(R)(r
′)H(S|f(r))

Now, we plug in the definition of conditional entropy on both sides. Then, we
substitute with g(x) = x log(1/x).

∑
r∈{r1,r2}

PR(r)
∑
s∈ΩS

P (s|r) log2
1

P (s|r)
= Pf(R)(r

′)
∑
s∈ΩS

P (s|f(r)) log2
1

P (s|f(r))∑
r∈{r1,r2}

PR(r)
∑
s∈ΩS

g(P (s|r)) = Pf(R)(r
′)
∑
s∈ΩS

g(P (s|r′))

∑
s∈ΩS

∑
r∈{r1,r2}

PR(r)

Pf(R)(r′)
g(P (s|r)) =

∑
s∈ΩS

Pf(R)(r
′)g(P (s|r′))

We can use the property in equation 3.3 again.

∑
s∈ΩS

∑
r∈{r1,r2}

PR(r)

Pf(R)(r′)
g(P (s|r)) =

∑
s∈ΩS

g

(
PR(r1)P (s|r1)

Pf(R)(r′)
+

PR(r2)P (s|r2)
Pf(R)(r′)

)

To simplify the terms we substitute x1 = P (s|r1), w1 = PR(r1)/Pf (R)(r′) and
x2 = P (s|r2), w2 = PR(r2)/Pf (R)(r′).

∑
s∈ΩS

[
w1g(x1) + w2g(x2)

]
=
∑
s∈ΩS

g(w1x1 + w2x2)
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We will show that this equality holds for each s ∈ ΩS.

∀s ∈ ΩS : w1g(x1) + w2g(x2) = g(w1x1 + w2x2)

Eventually, we can apply Jensen’s inequality to the strictly concave function g.
Here in (c) we can assume that the conditional probabilities are equal, x1 = x2,
and thus the equality holds. Since this is true for every s ∈ ΩS the equality
I(S;R) = I(S; f(R)) holds as we wanted to prove.

(d) Following the same first steps as in (c) we must switch the inequality sign once
because we drop the minus sign:

I(S;R) > I(S; f(R))∑
s∈ΩS

[
w1g(x1) + w2g(x2)

]
<
∑
s∈ΩS

g(w1x1 + w2x2)

Note, that g(x) is a strictly concave function because x log(1/x) is strictly
concave (MacKay, 2003, p. 35). By Jensen’s inequality for strictly concave
functions we know that:

∀s ∈ ΩS : w1g(x1) + w2g(x2) ≤ g(w1x1 + w2x2)

Additionally, we know that at least for one s the conditionally probabilities
are not equal P (s|r1) ̸= P (s|r2) ⇐⇒ x1 ̸= x2 because otherwise we would be
in case (c) and not here in (d). For such signal values s, Jensen’s inequality
states that the left term is strictly smaller than the right term.

∃s ∈ ΩS : w1g(x1) + w2g(x2) < g(w1x1 + w2x2)

Taking together that the terms in the left sum are less or equal than the
terms in the right sum and that there is at least one term that is strictly
smaller, the left sum is strictly smaller than the right sum. As a result, we get
I(S;R) > I(S; f(R)) as we wanted to prove.

■
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3.4 Generalizations

In this section we want to review our four assumptions. Only assumption 2 (equal
weights) is essential to our findings. We have already generalized over assumption
1 (binary signal) in proposition 5. Additionally, if assumptions 3 (discrete noise)
and 4 (independent noise) do not hold, our results still apply. This is satisfying
because, in most applications, we can ensure assumptions on the signal but not on
the noise.

3.4.1 Assumption 1 (binary signal) – non-binary signals

Assumption 1 (binary signal) requires the signal to be binary. We have already
extended our results to the non-binary case so that this assumption has been dealt
with. We want to briefly recap the difference between binary vs. non-binary case
here.

We interpret our results in the way that the mutual information captures other
aspects of the observation than the classification accuracy. While the classification
accuracy is interested in the proportion of correct predictions, the mutual informa-
tion additionally captures the variation in conditional accuracies (aspect 1) and,
in the non-binary case, the distribution over the remaining response values (aspect
2). So the non-binary case adds another aspect that is measured by the mutual
information.

3.4.2 Assumption 2 (equal weights) – relative mutual in-
formation

Assumption 2 (equal weights) requires the signal to be equally weighted. This is
a necessary assumption for our results and there is, to our knowledge, no simple
solution to compare responses for signals with different weightings.

When the signal is not equally weighted, a problem with the classification accu-
racy arises. Unequal weights may lead to misinterpretations when comparing differ-
ent classification tasks (Provost et al., 1997, Congalton, 1991). For example, com-
pare the following two binary classification tasks. Task 1 has an equally weighted
signal S1 and task 2 has unequal weights P (S2 = −1) = 0.99 and P (S2 = 1) = 0.01.
In task 2 a completely uninformative response can achieve a classification accuracy
of acc(S2|R) = 0.99 by simply always predicting the signal to be -1. This problem
of the classification accuracy is handled by taking into consideration other mea-
sures such as the specificity, sensitivity and receiver-operator-characteristic (ROC)
curves (Baldi et al., 2000, Fawcett, 2006).

IT takes a different approach to that problem. While S1 has a entropy of
H(S1) = 1bit, S2 only has a entropy of H(S2) ≈ 0.081bit. Thus, the highest pos-
sible amount of information that a response can convey about S2 is I(S2;R) ≤
0.081bit. This leads to the definition of a normalized version of the mutual in-
formation (Kononenko and Bratko, 1991). The concept is known under the term
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uncertainty coefficient (Press et al., 2007). The uncertainty coefficient gives the
relative reduction in uncertainty about S when R is observed.

Definition 10 (Certainty coefficient). The uncertainty coefficient U(S|R) for
S given R is the mutual information between S and R relative to the entropy of S
(Press et al., 2007):

U(S|R) =
I(S;R)

H(S)

Surprisingly, the uncertainty coefficient does not entirely correct for unequal
weights. For example, consider table 3.4. Here we used the same noise distribu-
tion and compared the equally vs. the unequally weighted case. Obviously, the
classification accuracy and the mutual information differ, acc(S1|R1) = 0.75 and
acc(S2|R2) = 0.9925 and I(S1;R1) = 0.311bit vs. I(S2;R2) = 0.0227bit. But the
certainty coefficient also decreases, U(S1|R1) = 0.311bit vs. U(S2|R2) = 0.281bit.
This seems to be counter-intuitive because one may think that the certainty co-
efficient eliminates the influence of S. Nevertheless, the weightings of S in fact
influence the marginal distribution of R. To our knowledge the relation between
the weightings of S and the mutual information or uncertainty coefficient has not
been investigated yet. Due to the limited time frame of this thesis we can not solve
this problem here. We wanted to point out that there is not a simple solution in
the framework of IT.

R1

-3 -1 1 3

S1
1 0.125 0.250 0.125 0 0.5

1 0 0.125 0.250 0.125 0.5

(a)

R2

-3 -1 1 3

S2
1 0.2475 0.4950 0.2475 0 .99

1 0 0.0025 0.0050 0.0025 .01

(b)

Table 3.4: Two classification settings with the same noise distribution but different
weightings of the signal. In (a) according to the equal weights assumption the
weights are equal, P (S1 = −1) = P (S1 = 1) = 0.5. In (b) the weights are not
equal, P (S2 = −1) = 0.99 and P (S2 = 1) = 0.01. The weightings have impact not
only on the mutual information I(S1;R1) = 0.311bit vs. I(S2;R2) = 0.0227bit but
also on the certainty coefficient, U(S1|R1) = 0.311bit vs. U(S2|R2) = 0.281bit.

In conclusion, the weightings of the signal play a relevant and non-trivial role for
both, the classification accuracy and the mutual information. Hence, assumption
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2 (equal weights) is essential to our findings. When comparing different responses,
their signals should exhibit the same weightings. Otherwise, the performance of
the responses can not be easily compared.

3.4.3 Assumption 3 (discrete noise) – generalization to the
continuous case

Assumption 3 (discrete noise) requires the noise to have a finite or countably infinite
support. Note, that we never used this assumption in our proofs and therefore our
results extend to the case of continuous noise. The reason we chose to introduce
this assumption is to deal with the continuous case separately in this section. Here,
we want to provide a brief explanation of why our results are unaffected by the
problems that emerge with continuous variables in IT.

With continuous variables the definition of entropy has to be reconsidered re-
placing the sum by an integral.

Definition 11 (Differential entropy). The differential entropy h of a continuous
random variable S with probability density function f is (Cover and Thomas, 2006,
p. 243):

h(S) =

∫ ∞

−∞
f(s) log2

1

f(s)
ds [bit]

When f(s) = 0 then f(s) log2 1/f(s) ≡ 0 because limx→0 x log 1/x = 0.

The definitions of conditional entropy and mutual information for continuous
variables follow alike. While most properties transfer from the discrete to the
continuous case, two problems emerge.

(1) Probability distributions on continuous random variables are density distribu-
tions. As density distribution functions can have values greater than 1, the
differential entropy can be negative. For example the differential entropy of a
continuous random variable S with a uniform density distribution with sup-
port [0, 0.5] is h(S) = −1bit. It is not clear how to interpret this negative
entropy.

(2) Unlike the discrete entropy, the differential entropy is not independent of the
measuring unit. For example, let the said uniformly distributed random vari-
able S with support [0, 0.5] be measured in cm. When measuring in mm the
range is scaled up by a factor of a = 10. The uniform distribution is stretched
to the support of [0, 5] which yields a differential entropy of h(aS) ≈ 2.322bit.
This is because h(aS) = h(S) + log|a|, e.g. h(10S) = −1bit+ 3.322bit (Cover
and Thomas, 2006, p. 254). This does not happen to the discrete entropy
when different measuring units are used.

Nevertheless, these problems are not relevant to our proofs because at no point
we applied assumption 3 and therefore we can simply leave it out of the proofs
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and replace the sums by integrals where necessary. Still, we want to provide an
explanation of why these seemingly problematic aspects do not affect our results.

(1) The mutual information is non-negative even for continuous variables (Cover
and Thomas, 2006, p. 253).

(2) With a scaling factor a the continuous entropy changes from h(S) to h(aS) =
h(S) + log|a|. Thus scaling does not change the mutual information.

I(aS;R) = h(aS)− h(aS|R)

= h(S) + log|a|−(h(S|R) + log|a|)
= h(S)− h(X|R)

= I(S;R)

It is also noteworthy that continuous random variables can be quantized to dis-
crete random variables. The mutual information of quantized variables converges
to the mutual information of the continuous variables (Cover and Thomas, 2006,
p. 251). Thus, we can treat the mutual information in the continuous case as
the limit of the discrete mutual information of quantized variables. In conclusion,
continuous variables pose no problem to our results.

3.4.4 Assumption 4 (independent noise) – extreme cases
with independent noise

Assumption 4 (independent noise) requires that the noise is independent of the
signal. We did not use this assumption in any of our proofs. Therefore, our
results generalize to the dependent noise case. But when our bounds even hold for
the dependent noise case one may ask whether there are stronger bounds in the
independent noise case. In this section we provide independent noise examples for
the minimal vs. maximal mutual information proving that our bounds are tight
at least for the binary case.

We start with the example of maximal mutual information for a given clas-
sification accuracy. In this case the noise is uniform. The following noise seems
rather artificial and complex but we only want to prove the existence of a case that
maximize the mutual information with independent noise (see table 3.6):

P (N = n) =

{
c1 if n ∈

{
(k−0.5)2c1

acc(S|R)−0.5
| k ∈ Z ∧ − 1

4c1
< |k| ≤ 1

4c1

}
,

0 otherwise.

where c1 =
1− acc(S|R)

2
T

(
acc(S|R)− 0.5

1− acc(S|R)

)
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Here, T is Thomae’s function (Bartle and Sherbert, 1999, p. 122). The constant
c1 represents the fractions of the probability mass. For example a classification ac-
curacy of acc(S|R) = 0.8 leads to c1 =

1
20

and the contingency table 3.5. This table
represents two overlapping uniform probability distribution that can be aggregated
to obtain the introductory example. The aggregation has the same classification
accuracy and mutual information because only responses with equal conditional
probabilities are aggregated.

R

−15
6
−13

6
−11

6
−9

6
−7

6
−5

6
−3

6
−1

6
1
6

3
6

5
6

7
6

9
6

11
6

13
6

15
6

S
-1 1

20
1
20

1
20

1
20

1
20

1
20

1
20

1
20

1
20

1
20

0 0 0 0 0 0

1 0 0 0 0 0 0 1
20

1
20

1
20

1
20

1
20

1
20

1
20

1
20

1
20

1
20︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸

f(R)

-1 0 1

S
-1 0.3 0.2 0

1 0 0.2 0.3

Table 3.5: Contingency table with uniform noise and its aggregation with equal
classification accuracy acc(S|R) = 0.8 and maximal mutual information I(S;R) =
0.6bit.

The second example with minimal mutual information has symmetric, discrete,
exponential-like noise. Again, what is important here is not the mathematical
details of this function but that exponential-like noise leads to the minimal mutual
information in the independent noise case (see table 3.6):

P (N = n) =

{
c2e

−λ|n| if n ∈ {2k|k ∈ Z},
0 otherwise.

where c2 =
e2λ − 1

e2λ + 1
and λ = 0.5 · loge

(
acc(S|R)

1− acc(S|R)

)
Here, c2 is the normalization constant and λ is the parameter that determines

the classification accuracy. All conditional accuracies are equal. For example, a
classification accuracy of acc(S|R) = 0.8 leads to c2 ≈ 0.433, λ ≈ 1.386 and the
contingency table 3.6. All conditional accuracies are acc(S|r) = 0.8. This example
can be aggregated into the introductory example with minimal mutual information.
Again, the classification accuracy and mutual information stay unchanged because
only responses with equal conditional probabilities are aggregated.
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R

... -3 -2 -1 1 2 3 ...

S
-1 0.019 0.075 0.300 0.075 0.019 0.005

1 0.005 0.019 0.075 0.300 0.075 0.019︸ ︷︷ ︸ ︸ ︷︷ ︸
f(R)

-1 1

S
-1 0.4 0.1

1 0.1 0.4

Table 3.6: Contingency table with symmetric, discrete, exponential distribution
and its aggregation with equal classification accuracy acc(S|R) = 0.8 and minimal
mutual information I(S;R) ≈ 0.278bit.

At this point we assume that concerns may arise about the support sizes. First,
the support sizes of the two responses in the introduction were not equal. And
now the second example requires an infinite support size in order to minimize the
mutual information in the independent noise case. In principle, a support size of
2 is sufficient to either display minimal mutual information (two equal conditional
accuracies) or to display maximal mutual information (conditional accuracies of
0.5 and 1). But it is more complicated in the independent noise case. We suspect
that by introducing restrictions on the support size of the response ΩR one could
obtain stronger bounds for the independent noise case. But because of the limited
time frame of this thesis we can not solve this problem here.

We have shown that even with independent noise our bounds are tight in the
binary case. In the non-binary case the bounds are tight for dependent noise and
we conjecture that they are in the independent case, too. Although in this case
R would have to be a vector of independent dimensions to make the independent
noise work. Because of the complexity in this case we chose not to incorporate it
into this thesis. However, restrictions on the support size of the response (and, in
the non-binary case, on the dimension of R) may lead to stronger bounds.
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Chapter 4

Reinterpreting the indirect task
advantage

In this chapter we reveal a flawed interpretation in psychological research. This
interpretation is based on the comparison between a binary vs. a continuous
response. We argue that the binary response can be seen as an aggregation of
the continuous response and therefore the information is strictly smaller. Using
our theoretical results we can show that the continuous response outperforms the
binary because of the aggregation and not because of underlying differences.

In 2014, ten Brinke et al. have claimed that unconscious processing is superior
to conscious processing. They compare conscious vs. unconscious performances
in the direct vs. the indirect task. Then, they observe better performances in the
indirect task indicating superior unconscious processing (indirect task advantage).
But the problem is that they use a binary response for the direct task in contrast to
a continuous response in the indirect task. In fact, even if we assume that conscious
and unconscious performances are equal the direct task forces an aggregation into
a binary response. This potentially decreases the mutual information leading to
a worse response in the direct task and to a better performance in the indirect
task. Thus, we argue that their interpretation is flawed because the differences
they find may not come from superior unconscious processing but may have only
been caused by restricting the response to be binary in the direct task.

First, we will describe their findings that display differences between direct
and indirect tasks (section 4.1). Then, we will show that even for equal underly-
ing performances these differences appear (section 4.2). Thus, in section 4.3 we
conclude that interpreting a superior unconscious performance from this differ-
ence is incorrect. The indirect task advantage in their results is a response metric
advantage.

4.1 Findings from ten Brinke et al. (2014)

In experiment 2 ten Brinke et al. (2014) compare conscious vs. unconscious lay lie
detection. They show videos to participants in which a suspect pleads to be not
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CHAPTER 4. REINTERPRETING THE INDIRECT TASK ADVANTAGE

guilty. Some of these pleas are lies and some are the truth. Then the participants
are asked to classify each video as a lie or the truth. This is the direct task
because it represents conscious evaluation. In this direct task the participants did
not perform above chance level with a mean accuracy of 49.62%, t(65) = −0.27,
p = .79, d = −0.01. In fact, the literature supports the notion that participants
are close to chance level (54%) when it comes to conscious detection of lies (Bond
and DePaulo, 2006).

The indirect task representing unconscious processing involves an implicit asso-
ciation task with priming (Greenwald et al., 1998, 2003). In this task participants
first saw the videos of the pleading suspects. Then, they had to classify words such
as “deceitful” or “valid” into one of two semantic categories. The first category is
related to lies whereas the second category is related to the truth. Shortly before
this task participants were primed. The masked prime was a frame of a video
the participants saw beforehand. In the congruent condition the participants were
primed with a frame of a video that was related to the same semantic category
as the subsequent word. For example, participants were primed with a frame of
a video in which the actor lied and then had to classify “deceitful” into the lie
category. Therefore, the content of the prime was semantically congruent to the
content of the word. In the incongruent condition the semantic content of prime
and word differed (e.g. a picture of a video in which the actor lied and the word
“valid”). In this task, participants classified the words faster in the congruent
condition compared to the incongruent condition. For single reaction times the
difference between congruent and incongruent condition was d = 0.03 standard
deviations (SD = 0.11). The averages of reaction times over multiple trials (64
per video pair, 12 videos) yielded a significant result, t(65) = 2.26, p = .027,
d = 0.27.

This reflects a better performance in the indirect task compared to the direct
task because the effect size in the indirect task (d = 0.27) is higher than in the
direct task (d = −0.01). From this ten Brinke et al. (2014, 2016) interpret that
the unconscious performance is superior to the conscious performance.

4.2 Model with equal conscious and unconscious

performance

From our understanding a better performance in the indirect task does not indicate
superior unconscious performance. Assume for a moment that the conscious and
unconscious performance is equal. The direct task poses a restriction because it
requires a binary response. Participants are forced to internally dichotomize their
response. This dichotomization is an aggregation that will lead to a decrease in
mutual information and in the direct task performance even when the underlying
performances are equal.

To elaborate on this argument we now apply IT by modelling the problem in
terms of signals, noise and responses. In the direct task the signal is the validity
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channel 

signal 𝑆 ∈ {−1,1} 

… … 

𝑅𝑢𝑛𝑑𝑒𝑟𝑙𝑦𝑖𝑛𝑔  

𝑆 

   no aggregation             aggreg. function 𝑓 

direct task indirect task 

𝑅𝑑𝑖𝑟𝑒𝑐𝑡 

𝑆 … … 

𝑅𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡 

𝑆 

𝑎𝑐𝑐 𝑆 𝑅𝑑𝑖𝑟𝑒𝑐𝑡 = 𝑎𝑐𝑐 𝑆 𝑅𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡  

𝐼 𝑆; 𝑅direct ≤ 𝐼(𝑆; 𝑅𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡) 

noise 𝑁 

Figure 4.1: The channel model of direct and indirect task with equal underlying
response. Since the direct task restricts the response format to be binary the
mutual information may decrease.

of the video, Sdirect = −1 for a lie and Sdirect = +1 for the truth. In the indirect
task the signal is the congruency condition, Sindirect = −1 for incongruent and
Sindirect = +1 for congruent conditions. Both signals can be treated as equal
because despite their semantic differences they are binary and equally weighted.
We now make our crucial assumption that there is an equal underlying response
Runderlying in both tasks. In the direct task this response has to be internally
dichotomized by the participants, Rdirect = f(Runderlying). Whereas, in the indirect
task the response is equal to the underlying response, Rindirect = Runderlying. For
an illustration of our model see figure 4.1. The “channel” is the participant who,
given a signal, produces an imperfect response either in the direct or in the indirect
task.

We will now go into the mathematical details of our model. We will assume
Gaussian noise N and choose median split as the optimal dichotomization f . With
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CHAPTER 4. REINTERPRETING THE INDIRECT TASK ADVANTAGE

this we will dichotomize the responses in the indirect task (reaction times) from
the data of of ten Brinke et al. (2014). As a result, the mutual information will
decrease at least by 35.8% and with that the effect size will shrink from d = 0.03
to d = 0.01. This reveals that the binary response of the direct task necessarily
performs worse than the continuous response of the indirect task. Thus, even if
the underlying performances are equal, the direct task allows for less information
to be conveyed leading to a lower effect size.

We assume the noise N to be independent and Gaussian. Then, the underlying
response as well as the indirect response Rindirect are mixtures of two Gaussians
(see figure 4.2). Without loss of generality assume E(N) = 0 and V ar(N) =
σ2. This is not a restriction because a linear transformation relates this setting
to any other setting with the same effect size, Cohen’s d = |s1−s2|

σ
. Hence, the

mutual information I(S;Rindirect) is a function of d. There is no closed form for
calculating I(S;Rindirect) in this case but there are approximations available (Nasif
and Karystinos, 2005). Thus, we can plot d against the mutual information of the
indirect task, see table 4.3.

For the direct task we have to apply the optimal dichotomization f which, in
this case, is a median split (see figure 4.2).
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Figure 4.2: A mixture of two Gaussians can be optimally dichotomized by a median
split. The light and dark grey areas indicate the error probability Φ(d/2), where
d is Cohen’s effect size parameter and Φ is the cumulative normal distribution.
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f(R) =

{
1 if R ≥ 0,

−1 if R < 0.

From proposition 6 we can deduce what happens to the mutual information
upon this aggregation. For Gaussian noise the conditional accuracies are
acc(S|Runderyling = r) = [1 + e−2|r|]−1 and they are strictly monotone for R ≥ 0
and R < 0, respectively. This implies that the conditional probabilities of aggre-
gated responses values are not equal and therefore the mutual information strictly
decreases, I(S;Rdirect) = I(S; f(Rindirect)) < I(S;Rindirect). Figure 4.3 plots the
mutual information in the direct vs. indirect task and shows this noteworthy
difference as predicted by our proposition 6.

Now consider d = 0.03 because that was mean effect size of a single indi-
rect task response in the experiment of ten Brinke et al. (2014). This leads to
I(S;Rindirect) ≈ 0.00016bit for the indirect task and I(S;Rdirect) ≈ 0.0001bit for
the direct task. The dichotomization discards 35.8% of the mutual information.
This loss of information is accompanied by a smaller effect size and test power ac-
cording to Cohen (1983, 1988). In fact, dichotomizing a mixture of two Gaussians
with d = 0.03 results in a decreased effect size of only d = 0.01. To make this argu-
ment as clear as possible: Even if the participants knew their actual unconscious
responses from the indirect task, they would still perform worse in the direct task
because it restricts their response to be binary!

We have assumed Gaussian noise for the reaction times. But reaction times are
often considered to have a log-normal noise distribution. When we use log-normal
noise, estimate the parameters based on the data from ten Brinke et al. (2014) and
then perform the same analysis we get even stronger results. The information loss
upon dichotomization in this case is at 59.7%, I(S;Rindirect) ≈ 0.000256bit and
I(S;Rdirect) ≈ 0.000103bit (We have tried different parameter estimates and this
was the one losing the least amount of information).

4.3 No evidence for superior unconscious perfor-

mance

To summarize the last two sections: (4.1) there are different effect sizes in the
direct vs. indirect task; and (4.2) this difference occurs even when underlying
conscious vs. unconscious performances are equal because the direct task forces a
binary response. In conclusion, a better indirect task performance (indirect task
advantage) does not necessarily indicate superior unconscious performance. To
support our argument we want to cite other findings related to this issue.

First, Cohen (1983, 1988) explained how dichotomization decreases informa-
tion, effect size and test power. Our contribution to his argument is that we
calculated how much information in bit is lost in our case. Even though Cohen
was considering the dichotomization that is done explicitly by researchers in their
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Figure 4.3: The mutual information in the direct and indirect task assuming inde-
pendent Gaussian noise and the optimal dichotomization.

statistical analyses, we argue that the same argument holds when researchers force
participants to dichotomize internally. The decreased information due to this di-
chotomization explains the stronger effect size in the indirect task.

Second, Reingold and Merikle (1988) have repeatedly recommended that when
comparing conscious and unconscious performances the direct and indirect task
have to use the same response metric (Merikle and Reingold, 1991, 1992). They
refer to Eriksen (1956) who criticised Lazarus and McCleary (1951) for using a
discrete response in the direct task and a continuous response in the indirect task.
The critique is that the difference between the direct and indirect task can be
attributed to the difference in the response metric and not necessarily to a superior
unconscious performance. The same critique applies to the lie detection experiment
from ten Brinke et al. (2014). They used a binary response in the direct task (“lie”
or “truth”) and a continuous response in the indirect task (reaction times). We
agree with this critique entirely.

Third, our understanding is based on and supported by the findings of Franz
and von Luxburg (2015). They reproduced the results from ten Brinke et al.
(2014) based on the same data. Their finding was that indirect task does not allow
for a better classification accuracy than the meta-analysis by Bond and DePaulo
(2006) has shown (54%). Among other analyses, they dichotomized the reaction
times in the data of using a designated median for each participant. This is the
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4.3. No evidence for superior unconscious performance

explicit dichotomization that we assume the participants had to do internally.
The resulting classification accuracy was 50.6% (SD = 2.65%) compared to the
classification accuracy in the direct task 49.62% (SD = 11.36%). The classification
accuracies are essentially equal. This fits to our model because we assume that
the dichotomization decreases the mutual information but keeps the classification
accuracy equal as we see here. Based on this we doubt that there really is an
underlying difference between conscious vs. unconscious performance.

Other researchers show the same pattern of results. They – at least implicitly
– compare binary responses and continuous responses. For example, Dehaene
et al. (1998) show that participants can not reliably differentiate masked primes
(numbers) with a duration of 43ms in the direct task (binary response). In the
indirect task, they find larger effect sizes measuring reaction times (continuous
responses). The same comparison is done by Pessiglione et al. (2007) but with
pictures of coins instead of numbers. They too find larger effect sizes in the indirect
task using a continuous response compared to the direct task where they use a
binary response. In both cases the participants might have been able to perform
better if the direct task had not restricted them to binary responses. Nevertheless,
Pessiglione et al. (2007) interpret from a missing significant result in the direct task
that “the analysis could then be restricted to all situations where subjects guess
at chance level about stimulus identity”. But a missing significant result does not
mean that the participants in the direct task perform on chance level, especially
when the test power is diminished due to the binary response metric.

The binary response metric of the direct task may have lead a decrease in the
mutual information and effect size compared to the indirect task. This indirect
task advantage is no evidence for an underlying difference in the performances if
the response metrics are different. Yes, the performance in the indirect task is
better than in the direct task as indicated by larger effect sizes. But this may
only be because it is harder to achieve large effect sizes with a binary response due
to lower mutual information even though the classification accuracy is equal. In
conclusion, lower effect sizes in the direct task compared to the indirect task are
no evidence for superior unconscious processing if different response metrics are
used (e.g. binary vs. continuous).
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Chapter 5

Loss and risk

In this chapter we will investigate the performance of observations with different
mutual information and equal classification accuracy. As we have explained before,
the mutual information captures not only the classification accuracy but also two
other properties, the variation of conditional accuracies (aspect 1) and the entropy
over the remaining response values (aspect 2). We will characterize one scenario
in which these aspects are irrelevant and another in which aspect 1 is relevant
by defining a loss functions for each scenario. In both scenarios we will show the
performance of observations with minimal vs. maximal mutual information.

For this investigation we will jump back to the notation of observations X
and labels Y instead of responses R and signals S. We do so because this is
the common terminology when describing loss functions. We will consider binary
classification tasks in which an observation X is used to predict label Ŷ while
the true label is Y ∈ {−1, 1}. The prediction may be incorrect, Ŷ ̸= Y , and
we measure the cost of incorrect predictions with a loss function, l(X, Y, Ŷ ). We
want to choose observations X in order to minimize the expected loss, or risk:
Rl(X) = E[l(X, Y, Ŷ )]. Because we want to compare different observations we
use the optimal strategy π to predict Ŷ = π(X). Thus, π minimizes Rl(X).
Depending on the loss function π(X) may be the Bayes Classifier C∗(X) predicting
the most probable label. But it can also be that π(X) = 0 because a prediction
is no accurate enough so that we choose to abstain from making a prediction
by choosing the value 0. We will now define two loss functions and compare
observations with constant classification accuracy, acc = acc(Y |X), and minimal,
Xacc

min I, vs. maximal mutual information, Xacc
max I. As we have shown before the

minimal mutual information is obtained when all conditional accuracies are equal.
The maximal mutual information occurs when all conditional accuracies are 0.5
or 1. This is illustrated in table 5.1. For these two observations we derive and
compare their respective risks and see for which loss functions Xacc

max I performs
better.
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Xacc
min I

-1 1

Y
-1 acc

2
1−acc

2

1 1−acc
2

acc
2

Xacc
max I

-1 0 1

Y
-1 2acc−1

2
1− acc 0

1 0 1− acc 2acc−1
2

Table 5.1: Observations with minimal, Xacc
min I, vs. maximal mutual information,

Xacc
max I, for a fixed classification accuracy acc = acc(Y |X). These examples are

representative because minimal mutual information requires all conditional accu-
racies to be on average and maximal mutual information requires them to be at
0.5 and 1.

5.1 0-1-loss

The first scenario is characterized by the 0-1-loss. An incorrect prediction leads
to a loss of 1 and a correct prediction to 0. A prediction has to be made for all
observations.

l1(X, Y, Ŷ ) =

{
0 if Ŷ = Y,

1 otherwise.

Here, the optimal strategy is to always predict the most probable label. In this
scenario the risk simply boils down to Rl1(X

acc
min I) = Rl1(X

acc
max I) = 1 − acc and is

independent of the mutual information. Thus, in scenario in which one always has
to predict only the classification accuracy is relevant.

5.2 0-λ-1-loss

There are scenarios in which it might be more desirable to make no prediction
instead of an unreliable prediction. This includes scenarios where it is better to take
no action than to take an action based on unreliable information. With this, we
aim to support the findings by Hu (2014) who argues that the mutual information
is the preferred measure in cases in which an observation can be “rejected”, instead
of making an unreliable prediction. For such scenarios we will define a 0-λ-1-loss.
It is a 0-1-loss including the option to make no prediction or to take no action.
But using this option costs λ because e.g. it costs time and effort to apply the
measurement even though it does not produce the desired prediction.

l2(X, Y, Ŷ ) =


0 if Ŷ = Y,

λ if Ŷ = 0,

1 otherwise.
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In this scenario the optimal strategy depends on λ and acc(Y |X) because de-
pending on how much it costs to abstain from making a prediction it may be fa-
vorable to risk making a prediction or not. We can distinguish four sub-scenarios
(a)-(d) as shown in figure 5.1. In (a) the optimal strategy is to never predict,
π(X) = 0. In (d) the optimal strategy is to always predict as in the 0-1-loss. But
in (b)-(c) we deal with what we call “risky” scenarios. In these cases it is only
favorable to make a prediction if the conditional accuracy of a particular observa-
tion is greater than 1− λ. Because Xacc

max I only has observations with conditional
accuracy of 0.5 or 1 the optimal strategy is to always predict on the informative
observations and never predict on the non-informative observations. In contrast,
Xacc

min I only has observations with conditional accuracy equal to acc so that the
strategy depends on whether acc > 1 − λ or not. In (b) the best strategy is to
never predict. But in (c) it is optimal to always predict.

(a) 𝜆 ≤ 0 (b) 0 < 𝜆 ≤ 1 − 𝑎𝑐𝑐 𝑌 𝑋  (c) 1 − acc 𝑌 𝑋 < 𝜆 < 0.5 (d) 0.5 ≤ 𝜆 

0 1-acc(Y|X) 0.5 

𝜆 

Figure 5.1: Axis for λ representing the different scenarios (a)-(d) in which different
strategies π are optimal. From left to right (for higher λ) it becomes more favorable
to make predictions even for unreliable observations.

The optimal strategies π lead to the risks calculated in table 5.2. In (b)-(c)
λ < 0.5 and acc(Y |X) > 0.5 so that the risk is strictly smaller for the observation
with maximal mutual information, Xacc

max I, compared to Xacc
min I. Thus, the observa-

tion with the maximal mutual information performs better than the observation
with the minimal mutual information.

Rl2(X
acc
min I) Rl2(X

acc
max I)

(a) λ = λ

(b) λ > 2λ(1− acc(Y |X))

(c) 1− acc(Y |X) > 2λ(1− acc(Y |X))

(d) 1− acc(Y |X) = 1− acc(Y |X)

Table 5.2: Risk of 0-λ-1-loss for scenarios (a)-(d). The risk is measures for obser-
vations with minimal vs. maximal mutual information but with the same classifi-
cation accuracy acc = acc(Y |X).

As an example, consider the lie detection task from chapter 4. Say, there are two
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lie detectors, one with minimal and one with maximal mutual information. Both
have a classification accuracy of acc(Y |X) = 0.8. When we plug these values into
table 5.1 we obtain our introductory examples from chapter 1: The first lie detector
with the minimal mutual information will always predict with a constant accuracy
of 80%. So 1 out of 5 times we get an incorrect prediction. The second lie detector
will make a perfectly accurate prediction in 60% of the cases. In the remaining
40% of the cases this lie detector will make an unreliable prediction that is only in
50% of the cases correct. Now say, the cost of applying the lie detector is 10 (in an
arbitrary unit). If we make a correct prediction we are happy and consider the cost
to be 0, but if we make a wrong prediction the cost is 100 in total. We can rescale
this scenario to a 0-0.1-1-loss. Then, we deal with sub-scenario (b). The risk of the
first lie detector is Rl2(X

acc
min I) = 0.1 and for the second it is Rl2(X

acc
max I) = 0.04.

In order to perform equally well on the risk, the observation with minimal mutual
information would require a classification accuracy of acc(Y |X) = 0.9 instead of
0.8. So in this case, the observation with the mutual information performs notably
better and it is worth checking the mutual information to evaluate this observation
even if the classification accuracy would have not been in favor of it.

We conclude that the mutual information is relevant in “risky” scenarios (0-
λ-1-loss with 0 < λ < 0.5). In these scenarios observations with maximal mutual
information strictly outperform observations with minimal mutual information at
equal classification accuracies. But depending on the scenario it could also be that
an observation with higher mutual information is outperformed by an observation
with lower mutual information but higher classification accuracy. As always, the
general conclusion is that for different scenarios one should apply the appropriate
measures. Here we have argued that in risky scenarios the mutual information is
relevant and should be taken into consideration.
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Chapter 6

Conclusion

In this thesis we have investigated the relation between the classification accuracy
and the mutual information. The two measures are loosely related to each other be-
cause they capture different properties of the classification task. The classification
accuracy measures the probability of a correct prediction but the mutual informa-
tion additionally captures the variation of conditional accuracies (aspect 1) and the
distribution over the remaining observation values (aspect 2). Their bounded rela-
tion is mediated through conditional accuracies. We found that when observations
are further processed by aggregating observations, the mutual information can de-
crease while the classification accuracy stays constant. With this theoretical result
we have shown that comparing binary vs. continuous observations is inherently bi-
ased towards a better performance of the continuous observation. Neglecting that
continuous observations are expected to outperform binary observations has lead
to a flawed interpretation in psychological research. Additionally, we have shown
that in risky scenarios (such as using a lie detector as evidence in court) the mutual
information is relevant and should be taken into consideration. In general, it is
important to consider the measure of mutual information next to the classification
accuracy.

Our theoretical analysis considered the Bayes classifier and assumed that the
true probabilities are known. This is not the case in real world applications. In
these applications the classification accuracy and the mutual information have to
be estimated. But estimators for the mutual information are inherently biased and
the bias also depends on the true probability distribution that is to be estimated
(Grassberger, 2003, Paninski, 2003, Kraskov et al., 2004). This poses substantial
difficulties on measuring the mutual information.

A way to deal with this problem might be to develop statistical tests for the
difference between the mutual information of two observations with their respective
labels. Then, even though we could not make an unbiased estimation, we would be
able to decide which observation conveys more information. Developing suitable
statistical tests for this application remains an open research question.

Regarding our critique on the flawed interpretation in psychological research we
want to clarify that we do not rule out the possibility that unconscious human pro-
cessing may outperform conscious processing. But we argue that the findings by
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ten Brinke et al. (2014) are not to be considered as evidence for it. In line with the
recommendations by Reingold and Merikle (1988) we suggest that evidence for su-
perior unconscious processing must be based on comparisons with equal response
metrics. For example researchers could dichotomize the continuous response so
that both tasks feature a binary response and compare those. Another possibility
to achieve equal response metrics is to give participants an n-point Likert scale in
the direct task. This would allow them to give a response with a higher mutual
information compared to a binary response because they can now indicate how
certain they are about their prediction. This reflects variation in conditional accu-
racy which allows for a higher mutual information. Then, the continuous response
from the indirect task would have to be transformed into a n-ary response as well
in order to make a fair comparison. It is also conceivable to allow participants to
use a continuous scale in the direct task. These so called “visual analogue scales”
are commonly used in pain research and a detailed description can be found in the
doctor thesis by Funke (2010).

That being said, we want to thank ten Brinke, Stimson and Carney for mak-
ing their data accessible. This allows for a transparent discussion and facilitates
scientific progress.

Potentially, there is another way to increase the mutual information in the
direct task of lay lie detection. Until now we have considered the direct task to
be a binary classification task and videos being either a lie or the truth. But the
videos are not binary objects, they are complex, multidimensional and continuous
objects reflecting for example the stress level of the pleading suspect in it. Thus,
future psychological research could model the videos as continuous or at least non-
binary signals allowing to capture the influence of these stimuli inhomogeneities
on the direct and indirect task performance.

A particularly interesting open question is: How is boosting affected by mutual
information? We understand that combining different observations with higher (vs.
lower) mutual information leads to better performances even when the classification
accuracy is initially equal. To see this, consider the introductory examples and
perform boosting on three independent observations. Predicting the label based
on three observations with minimal mutual information and classification accuracy
of 80% leads to a combined classification accuracy of 0.83+3 ·0.82 ·0.2 = 89.6%. In
contrast, three observations with maximal mutual information lead to a combined
classification accuracy of 1−(1−0.6)3 = 93.6%. Thus, the performance of boosting
seems to be influenced, not only by the classification accuracy, but also by the
mutual information. We think that a theoretical investigation on boosting in the
framework of information theory is a fruitful future research topic.

In line with Hu (2014) we want to conclude by stating that, at least in some
cases, the mutual information formalizes better what humans are concerned about,
compared to the classification accuracy.
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